High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers

被引:193
作者
Cai, Jie [1 ,2 ]
Niu, Haitao [2 ]
Li, Zhenyu [2 ]
Du, Yong [2 ]
Cizek, Pavel [2 ]
Xie, Zongli [3 ]
Xiong, Hanguo [1 ]
Lin, Tong [2 ]
机构
[1] Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Peoples R China
[2] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[3] CSIRO Mat Sci & Engn, Clayton, Vic 3169, Australia
基金
中国国家自然科学基金;
关键词
nitrogen-functionalized carbon nanofiber; cellulose; nanofibers; electrospinning; supercapacitor; ADVANCED ENERGY-CONVERSION; ASYMMETRIC SUPERCAPACITOR; BACTERIAL-CELLULOSE; VANADIUM PENTOXIDE; STORAGE; GRAPHENE; POWER; POLYANILINE; OXIDE; NANOCOMPOSITES;
D O I
10.1021/acsami.5b03757
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFS, which were obtained by electrospinning) deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)(2) showed specific capacitances of similar to 236 and similar to 1045 F g(-1) respectively, An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)(2) and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as similar to 51 (W h) kg(-1) and a maximum power density of similar to 117 kW kg(-1). The device had excellent cycle lifetime, which retained similar to 84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices:
引用
收藏
页码:14946 / 14953
页数:8
相关论文
共 71 条
[1]   Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods [J].
Ahn, Young Rack ;
Park, Chong Rae ;
Jo, Seong Mu ;
Kim, Dong Young .
APPLIED PHYSICS LETTERS, 2007, 90 (12)
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Carbon-based nanostructured materials and their composites as supercapacitor electrodes [J].
Bose, Saswata ;
Kuila, Tapas ;
Mishra, Ananta Kumar ;
Rajasekar, R. ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) :767-784
[4]   Electrospinning: designed architectures for energy conversion and storage devices [J].
Cavaliere, Sara ;
Subianto, Surya ;
Savych, Iuliia ;
Jones, Deborah J. ;
Roziere, Jacques .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4761-4785
[5]   Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Wang, Jia-Jun ;
Li, Qun-Xiang ;
Tan, Zi-Qi ;
Zhu, Yan-Wu ;
Yu, Shu-Hong .
NANO ENERGY, 2015, 11 :119-128
[6]   Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Gao, Huai-Ling ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5104-5111
[7]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[8]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[9]   Carbon nanomaterials for high-performance supercapacitors [J].
Chen, Tao ;
Dai, Liming .
MATERIALS TODAY, 2013, 16 (7-8) :272-280
[10]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028