3D Fully Convolutional Network Incorporating Savitzky-Golay Filtering for Prostate Segmentation

被引:2
作者
Zhong, Pinyuan [1 ]
Wu, Jiong [2 ]
Yuan, Zhe [1 ]
Zhang, Yue [1 ]
Tang, Xiaoying [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Shenzhen, Peoples R China
来源
THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019) | 2019年
关键词
Prostate segmentation; 3D fully convolutional network; long skip connection; Savitzky-Golay filtering; MRI;
D O I
10.1145/3364836.3364854
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we proposed a 3D fully convolutional network (FCN) incorporating Savitzky-Golay (SG) filtering for prostate segmentation using magnetic resonance images (MRIs). Deep learning methods have achieved promising results in the field of segmentation, especially in semantic segmentation. However, it is not fully applicable to 3D medical images. To better extract the spatial information encoded in the 3D volumetric data, we designed a 3D FCN with long skip connection and the Parametric Rectified Linear Unit (PReLU) being the activation function. To further polish the deep learning based segmentation results, we employed SG filtering as a post-processing step. The SG filter was applied for smoothing and denoising, wherein second-order partial derivatives were taken to extract the edge information and achieve hole filling. In comparison with the 3D FCN without SG filtering, the post-processed results were more smooth, accurate and robust. The proposed method performed superiorly for prostate segmentation over several other state-of-the-art methods.
引用
收藏
页码:88 / 91
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[2]  
[Anonymous], MICCAI GRAND CHALLEN
[3]   Deep Learning-Based Boundary Detection for Model-Based Segmentation with Application to MR Prostate Segmentation [J].
Brosch, Tom ;
Peters, Jochen ;
Groth, Alexandra ;
Stehle, Thomas ;
Weese, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 :515-522
[4]  
Cheng Ruida, P SPIE, V9784
[5]  
Dolz J., 2017, NEUROIMAGE
[6]   Learning normalized inputs for iterative estimation in medical image segmentation [J].
Drozdzal, Michal ;
Chartrand, Gabriel ;
Vorontsov, Eugene ;
Shakeri, Mahsa ;
Di Jorio, Lisa ;
Tang, An ;
Romero, Adriana ;
Bengio, Yoshua ;
Pal, Chris ;
Kadoury, Samuel .
MEDICAL IMAGE ANALYSIS, 2018, 44 :1-13
[7]  
Gowri BG, 2013, 2013 IEEE INTERNATIONAL MULTI CONFERENCE ON AUTOMATION, COMPUTING, COMMUNICATION, CONTROL AND COMPRESSED SENSING (IMAC4S), P365, DOI 10.1109/iMac4s.2013.6526438
[8]   Prostate MRI: Access to and Current Practice of Prostate MRI in the United States [J].
Leake, James L. ;
Hardman, Rulon ;
Ojili, Vijayanadh ;
Thompson, Ian ;
Shanbhogue, Alampady ;
Hernandez, Javier ;
Barentsz, Jelle .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2014, 11 (02) :156-160
[9]   Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge [J].
Litjens, Geert ;
Toth, Robert ;
van de Ven, Wendy ;
Hoeks, Caroline ;
Kerkstra, Sjoerd ;
van Ginneken, Bram ;
Vincent, Graham ;
Guillard, Gwenael ;
Birbeck, Neil ;
Zhang, Jindang ;
Strand, Robin ;
Malmberg, Filip ;
Ou, Yangming ;
Davatzikos, Christos ;
Kirschner, Matthias ;
Jung, Florian ;
Yuan, Jing ;
Qiu, Wu ;
Gao, Qinquan ;
Edwards, Philip Eddie ;
Maan, Bianca ;
van der Heijden, Ferdinand ;
Ghose, Soumya ;
Mitra, Jhimli ;
Dowling, Jason ;
Barratt, Dean ;
Huisman, Henkjan ;
Madabhushi, Anant .
MEDICAL IMAGE ANALYSIS, 2014, 18 (02) :359-373
[10]   Cancer treatment and survivorship statistics, 2016 [J].
Miller, Kimberly D. ;
Siegel, Rebecca L. ;
Lin, Chun Chieh ;
Mariotto, Angela B. ;
Kramer, Joan L. ;
Rowland, Julia H. ;
Stein, Kevin D. ;
Alteri, Rick ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (04) :271-289