A strain gradient functionally graded Euler-Bernoulli beam formulation

被引:162
作者
Kahrobaiyan, M. H. [1 ]
Rahaeifard, M. [1 ]
Tajalli, S. A. [1 ]
Ahmadian, M. T. [1 ,2 ]
机构
[1] Sharif Univ Technol, Sch Mech Engn, Tehran, Iran
[2] Sharif Univ Technol, CEDRA, Tehran, Iran
关键词
Strain gradient theory; Functionally graded material; Size-effect; Euler-Bernoulli beam model; Length scale parameter; COUPLE STRESS THEORY; TIMOSHENKO BEAM; MEMS APPLICATIONS; MICRO-BEAMS; ELASTICITY; VIBRATION; PLASTICITY; MODEL; MICROSTRUCTURE; FILMS;
D O I
10.1016/j.ijengsci.2011.11.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A size-dependent functionally graded Euler-Bernoulli beam model is developed based on the strain gradient theory, a non-classical theory capable of capturing the size-effect in micro-scaled structures. The governing equation and both classical and non-classical boundary conditions are obtained using variational approach. To develop the new model, the previously used simplifying assumption which considered the length scale parameter to be constant through the thickness is avoided in this work. As a consequence, equivalent length scale parameters are introduced for functionally graded microbeams as functions of the constituents' length scale parameters. Moreover, a generally valid closed-form solution is derived for static deflection of the new model. As case studies, the static and free-vibration of the new model are investigated for FG simply supported microbeams in which the properties are varying through the thickness according to a power law and the results of the new model are compared to those of the modified couple stress and the classical continuum theories, noted that the two latter theories are special cases of the strain gradient theory utilized in this paper. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 39 条
[1]   Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams [J].
Akgoz, Bekir ;
Civalek, Omer .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (11) :1268-1280
[2]  
[Anonymous], ADV APPL MECH
[3]   Investigation of the size effects in Timoshenko beams based on the couple stress theory [J].
Asghari, M. ;
Kahrobaiyan, M. H. ;
Rahaeifard, M. ;
Ahmadian, M. T. .
ARCHIVE OF APPLIED MECHANICS, 2011, 81 (07) :863-874
[4]   The modified couple stress functionally graded Timoshenko beam formulation [J].
Asghari, M. ;
Rahaeifard, M. ;
Kahrobaiyan, M. H. ;
Ahmadian, M. T. .
MATERIALS & DESIGN, 2011, 32 (03) :1435-1443
[5]   A nonlinear Timoshenko beam formulation based on the modified couple stress theory [J].
Asghari, M. ;
Kahrobaiyan, M. H. ;
Ahmadian, M. T. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2010, 48 (12) :1749-1761
[6]   On the size-dependent behavior of functionally graded micro-beams [J].
Asghari, M. ;
Ahmadian, M. T. ;
Kahrobaiyan, M. H. ;
Rahaeifard, M. .
MATERIALS & DESIGN, 2010, 31 (05) :2324-2329
[7]   Free vibration analysis of functionally graded beams with simply supported edges [J].
Aydogdu, Metin ;
Taskin, Vedat .
MATERIALS & DESIGN, 2007, 28 (05) :1651-1656
[8]  
Craciunescu CM, 2003, J OPTOELECTRON ADV M, V5, P139
[9]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[10]   A reformulation of strain gradient plasticity [J].
Fleck, NA ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (10) :2245-2271