AUTOMATIC DESIGN OF ROBUST OPTIMAL CONTROLLER FOR INTERVAL PLANTS USING GENETIC PROGRAMMING AND KHARITONOV THEOREM

被引:10
作者
Chen, Peng [1 ]
Lu, Yong-Zai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
关键词
Genetic Programming; Interval plant; Kharitonov Theorem; Robust Optimal Controller; NYQUIST ENVELOPE; STABILITY; ALGORITHMS; SYSTEMS;
D O I
10.1080/18756891.2011.9727834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach to automatic design of a robust optimal controller for interval plants with Genetic Programming based on Kharitonov Theorem (KT), which provides a theoretical foundation in the design of robust controller for interval plants. The structure and parameters of the robust optimal controller for interval plants are optimized by Genetic Programming and the Generalized KT related stability criteria are integrated into the solution to guarantee the stability of the closed-loop system. Consequently, the evolved controller not only minimizes time-weighted absolute error (ITAE) of the closed-loop system, but also stabilizes the whole interval plant family robustly. Finally, the simulations on a benchmark problem show that the proposed method can effectively generate a robust optimal controller for interval plants.
引用
收藏
页码:826 / 836
页数:11
相关论文
共 31 条
[1]   Genetic programming for the automatic design of. controllers for a surface ship [J].
Alfaro-Cid, Eva ;
McGookin, Euan W. ;
Murray-Smith, David J. ;
Fossen, Thor I. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2008, 9 (02) :311-321
[3]  
[Anonymous], 1990, MODERN CONTROL ENG
[4]  
[Anonymous], 2003, Genetic programming IV: routine human-competitive machine intelligence
[5]   EXTREME POINT RESULTS FOR ROBUST STABILIZATION OF INTERVAL PLANTS WITH 1ST ORDER COMPENSATORS [J].
BARMISH, BR ;
HOLLOT, CV ;
KRAUS, FJ ;
TEMPO, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :707-714
[6]   EXTREME POINT RESULTS FOR ROBUST STABILITY OF INTERVAL PLANTS - BEYOND FIRST-ORDER COMPENSATORS [J].
BARMISH, BR ;
KANG, HI .
AUTOMATICA, 1992, 28 (06) :1169-1180
[7]  
Bartlett A. C., 1988, Math. Control Sig., V1, P61, DOI DOI 10.1007/BF02551236
[8]   FREQUENCY-RESPONSE OF UNCERTAIN SYSTEMS WITH INTERVAL PLANTS [J].
BARTLETT, AC ;
TESI, A ;
VICINO, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (06) :929-933
[9]  
Bhattacharyya S. P., 1995, Robust control: the parametric approach
[10]   Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers [J].
Chan, K. Y. ;
Kwong, C. K. ;
Fogarty, T. C. .
INFORMATION SCIENCES, 2010, 180 (04) :506-518