B-Spline collocation method for a two-parameter singularly perturbed convection-diffusion boundary value problems

被引:43
作者
Kadalbajoo, Mohan K. [1 ]
Yadaw, Arjun Singh [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
singular perturbation; convection-diffusion problems; Shishkin mesh; B-spline collocation method;
D O I
10.1016/j.amc.2007.12.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have presented a B-spline collocation method for solving a class of two-parameter singularly perturbed boundary value problems. We use B-spline collocation method on piecewise-uniform Shishkin mesh, which leads to a tridiagonal linear system. The convergence analysis is given and the method is shown to have uniform convergence of second order. Numerical results are presented in the end which support the theoretical results. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:504 / 513
页数:10
相关论文
共 7 条
[1]  
BIGGE J, 1985, MATH COMPUT, V45, P393, DOI 10.1090/S0025-5718-1985-0804931-X
[2]  
Bohl E, 1981, FINITE MODELE GEWOHN
[3]   Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters [J].
Linss, T ;
Roos, HG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :355-366
[4]  
OMALLEY RE, 1967, J MATH MECH, V16, P1143
[5]  
Roos H.-G., 2003, Comput. Methods Appl. Math., V3, P443, DOI DOI 10.2478/CMAM-2003-0029
[6]  
SHISHKIN G, 1976, NUMER METHOD CONTIN, V7, P145
[7]   A higher-order scheme for quasilinear boundary value problems with two small parameters [J].
Vulanovic, R .
COMPUTING, 2001, 67 (04) :287-303