The Boltzmann-Grad limit and Cauchy-Kovalevskaya theorem

被引:19
作者
Ukai, S [1 ]
机构
[1] Yokohama Natl Univ, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
关键词
Newton equation; Boltzmann equation; BBGKY hierarchy; Boltzmann-Grad limit; abstract Cauchy-Kovalevskaya theorem;
D O I
10.1007/BF03168581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A technique based on the abstract Cauchy-Kovalevskaya theorem is used to derive uniform estimates of solutions of BBGKY hierarchy, which improves Lanford's theorem on the Boltzmann-Grad limit and simplifies its proof, in part. It is also applied to the Euler limit of the Boltzmann hierarchy.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 8 条
[1]  
[Anonymous], APPL MATH SCI
[2]  
AOKI K, 2000, KOKYUROKU, P154
[3]   LOCAL SOLUTIONS TO THE INITIAL AND INITIAL BOUNDARY-VALUE PROBLEM FOR THE BOLTZMANN-EQUATION WITH AN EXTERNAL FORCE .1. [J].
ASANO, K .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1984, 24 (02) :225-238
[4]   ON THE KINETIC THEORY OF RAREFIED GASES [J].
GRAD, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1949, 2 (04) :331-407
[5]  
Lanford O. E., 1975, LECT NOTE PHYS, V38, P1
[6]   FLUID DYNAMICAL LIMIT OF NON-LINEAR BOLTZMANN-EQUATION TO LEVEL OF COMPRESSIBLE EULER EQUATION [J].
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (02) :119-148
[7]  
Nishida T., 1977, J DIFFER GEOM, V12, P629
[8]  
Ukai S., 1983, HOKKAIDO MATH J, V3, P311, DOI DOI 10.14492/H0KMJ/1470081009)