On invariants of Hirzebruch and Cheeger-Gromov

被引:39
作者
Chang, S [1 ]
Weinberger, S
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
signature; L-2-signature; structure set; rho-invariant;
D O I
10.2140/gt.2003.7.311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, if M is a compact oriented manifold of dimension 4k + 3, where k > 0, such that pi(1)( M) is not torsion- free, then there are infinitely many manifolds that are homotopic equivalent to M but not homeomorphic to it. To show the infinite size of the structure set of M, we construct a secondary invariant tau((2)) : S( M) --> R that coincides with the rho-invariant of Cheeger-Gromov. In particular, our result shows that the rho-invariant is not a homotopy invariant for the manifolds in question.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 26 条
[1]  
Atiyah M.F., 1976, ASTERISQUE, V32-33, P43
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[5]   THE TOPOLOGY OF DISCRETE-GROUPS [J].
BAUMSLAG, G ;
DYER, E ;
HELLER, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 16 (01) :1-47
[6]  
BROWDER T, 1973, TOHOKU MATH J, V25, P69
[7]  
CHEEGER J, 1985, J DIFFER GEOM, V21, P1
[8]  
CHEEGER J, 1985, DIFFERENTIAL GEOMETR, P115
[9]  
Conner P.E., 1964, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), V33
[10]  
Farrell T., 1998, Asian J. Math., V2, P215