Quantum Criticality between Topological and Band Insulators in 3+1 Dimensions

被引:210
作者
Goswami, Pallab [1 ]
Chakravarty, Sudip [2 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevLett.107.196803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of Dirac fermions, the sign of the Dirac mass distinguishes the topological and the trivial band insulator phases, and the gapless semimetallic phase corresponds to the quantum critical point that separates the two. Up to a critical strength of disorder, the semimetallic phase remains stable, and the universality class of the direct phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semimetallic phase undergoes a phase transition into a disorder controlled diffusive metallic phase, and there is no longer a direct phase transition between the two types of insulating phases.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] ABRIKOSOV AA, 1971, SOV PHYS JETP-USSR, V32, P699
  • [2] THE ANDERSON-MOTT TRANSITION
    BELITZ, D
    KIRKPATRICK, TR
    [J]. REVIEWS OF MODERN PHYSICS, 1994, 66 (02) : 261 - 390
  • [3] Graphene via large N:: A renormalization group study
    Foster, Matthew S.
    Aleiner, Igor L.
    [J]. PHYSICAL REVIEW B, 2008, 77 (19)
  • [5] Topological insulators with inversion symmetry
    Fu, Liang
    Kane, C. L.
    [J]. PHYSICAL REVIEW B, 2007, 76 (04)
  • [6] Topological Anderson Insulator in Three Dimensions
    Guo, H. -M.
    Rosenberg, G.
    Refael, G.
    Franz, M.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (21)
  • [7] Colloquium: Topological insulators
    Hasan, M. Z.
    Kane, C. L.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (04) : 3045 - 3067
  • [8] Topological insulators and C*-algebras: Theory and numerical practice
    Hastings, Matthew B.
    Loring, Terry A.
    [J]. ANNALS OF PHYSICS, 2011, 326 (07) : 1699 - 1759
  • [9] Model Hamiltonian for topological insulators
    Liu, Chao-Xing
    Qi, Xiao-Liang
    Zhang, HaiJun
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    [J]. PHYSICAL REVIEW B, 2010, 82 (04):
  • [10] Interaction-Induced Criticality in Z2 Topological Insulators
    Ostrovsky, P. M.
    Gornyi, I. V.
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (03)