Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem

被引:33
作者
El Azami, Meriem [1 ,2 ,3 ,4 ]
Hammers, Alexander [5 ,6 ]
Jung, Julien [7 ]
Costes, Nicolas [8 ]
Bouet, Romain [7 ]
Lartizien, Carole [1 ,2 ,3 ,4 ]
机构
[1] Univ Lyon 1, CREATIS, F-69622 Villeurbanne, France
[2] Univ Lyon 1, CNRS, UMR5220, F-69622 Villeurbanne, France
[3] Univ Lyon 1, INSERM, U1206, F-69622 Villeurbanne, France
[4] Univ Lyon 1, INSA Lyon, F-69622 Villeurbanne, France
[5] Neurodis Fdn, Lyon, France
[6] Kings Coll London, Div Imaging Sci & Biomed Engn, PET Ctr, London, England
[7] Lyon Neurosci Res Ctr, INSERM, CNRS, U1028,UMR5292, Lyon, France
[8] CERMEP Imagerie Vivant, Lyon, France
关键词
FOCAL CORTICAL DYSPLASIA; VOXEL-BASED MORPHOMETRY; HUMAN BRAIN; AUTOMATED DETECTION; IMPROVES DETECTION; CLASSIFICATION; MATTER; ATLAS;
D O I
10.1371/journal.pone.0161498
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pattern recognition methods, such as computer aided diagnosis (CAD) systems, can help clinicians in their diagnosis by marking abnormal regions in an image. We propose a machine learning system based on a one-class support vector machine (OC-SVM) classifier for the detection of abnormalities in magnetic resonance images (MRI) applied to patients with intractable epilepsy. The system learns the features associated with healthy control subjects, allowing a voxelwise assessment of the deviation of a test subject pattern from the learned patterns. While any number of various features can be chosen and learned, here we focus on two texture parameters capturing image patterns associated with epileptogenic lesions on T1-weighted brain MRI e.g. heterotopia and blurred junction between the grey and white matter. The CAD output consists of patient specific 3D maps locating clusters of suspicious voxels ranked by size and degree of deviation from control patterns. System performance was evaluated using realistic simulations of challenging detection tasks as well as clinical data of 77 healthy control subjects and of eleven patients (13 lesions). It was compared to that of a mass univariate statistical parametric mapping (SPM) single subject analysis based on the same set of features. For all simulations, OC-SVM yielded significantly higher values of the area under the ROC curve (AUC) and higher sensitivity at low false positive rate. For the clinical data, both OC-SVM and SPM successfully detected 100% of the lesions in the MRI positive cases (3/13). For the MRI negative cases (10/13), OC-SVM detected 7/10 lesions and SPM analysis detected 5/10 lesions. In all experiments, OC-SVM produced fewer false positive detections than SPM. OC-SVM may be a versatile system for unbiased lesion detection.
引用
收藏
页数:21
相关论文
共 46 条
[11]   The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission [J].
Bluemcke, Ingmar ;
Thom, Maria ;
Aronica, Eleonora ;
Armstrong, Dawna D. ;
Vinters, Harry V. ;
Palmini, Andre ;
Jacques, Thomas S. ;
Avanzini, Giuliano ;
Barkovich, A. James ;
Battaglia, Giorgio ;
Becker, Albert ;
Cepeda, Carlos ;
Cendes, Fernando ;
Colombo, Nadia ;
Crino, Peter ;
Cross, J. Helen ;
Delalande, Olivier ;
Dubeau, Francois ;
Duncan, John ;
Guerrini, Renzo ;
Kahane, Philippe ;
Mathern, Gary ;
Najm, Imad ;
Ozkara, Cigdem ;
Raybaud, Charles ;
Represa, Alfonso ;
Roper, Steven N. ;
Salamon, Noriko ;
Schulze-Bonhage, Andreas ;
Tassi, Laura ;
Vezzani, Annamaria ;
Spreafico, Roberto .
EPILEPSIA, 2011, 52 (01) :158-174
[12]  
Bowman A., 1997, APPL SMOOTHING TECHN
[13]   Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: Combined grey/white matter analysis augments detection [J].
Bruggemann, Jason M. ;
Wilke, Marko ;
Som, Seu S. ;
Bye, Ann M. E. ;
Bleasel, Andrew ;
Lawson, John A. .
EPILEPSY RESEARCH, 2007, 77 (2-3) :93-101
[14]   Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging [J].
Cantor-Rivera, Diego ;
Khan, Ali R. ;
Goubran, Maged ;
Mirsattari, Seyed M. ;
Peters, Terry M. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 41 :14-28
[15]  
Canu S., 2005, Perception Systmes et Information
[16]   Individual voxel-based analysis of gray matter in focal cortical dysplasia [J].
Colliot, O ;
Bernasconi, N ;
Khalili, N ;
Antel, SB ;
Naessens, V ;
Bernasconi, A .
NEUROIMAGE, 2006, 29 (01) :162-171
[17]   MR-based neurological disease classification methodology: Application to lateralization of seizure focus in temporal lobe epilepsy [J].
Duchesne, S ;
Bernasconi, N ;
Bernasconi, A ;
Collins, DL .
NEUROIMAGE, 2006, 29 (02) :557-566
[18]   Computer aided diagnosis of intractable epilepsy with MRI imaging based on textural information [J].
El Azami, Meriem ;
Hammers, Alexander ;
Costes, Nicolas ;
Lartizien, Carole .
2013 3RD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI 2013), 2013, :90-93
[19]   Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology [J].
Fauser, S ;
Schulze-Bonhage, A ;
Honegger, J ;
Carmona, H ;
Huppertz, HJ ;
Pantazis, G ;
Rona, S ;
Bast, T ;
Strobl, K ;
Steinhoff, BJ ;
Korinthenberg, R ;
Rating, D ;
Volk, B ;
Zentner, J .
BRAIN, 2004, 127 :2406-2418
[20]   Automated MR image classification in temporal lobe epilepsy [J].
Focke, Niels K. ;
Yogarajah, Mahinda ;
Symms, Mark R. ;
Gruber, Oliver ;
Paulus, Walter ;
Duncan, John S. .
NEUROIMAGE, 2012, 59 (01) :356-362