The effect of azalomycin F on Ca2+ homeostasis in Trichoderma viride and Saccharomyces cerevisiae

被引:0
|
作者
Simkovic, M
Lakatos, B
Tsuji, FI
Muto, S
Varecka, L
机构
[1] Slovak Univ Technol Bratislava, Dept Biochem & Microbiol, Bratislava 81237, Slovakia
[2] Univ Calif San Diego, Scripps Inst Oceanog, Div Marine Biol Res, La Jolla, CA 92093 USA
[3] Nagoya Univ, Biosci Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
azalomycin F; Ca2+ flux; Saccharomyces cerevisiae; Trichoderma viride;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Azalomycin F (AMF), a macrocyclic lactone antibiotic, in concentrations of 10(-5) g/ml (10(-6)-10(-5) mol/l) was found to stimulate both the Ca-45(2+) influx and efflux in intact Trichoderma viride submerged mycelium and in cells of Saccharomyces cerevisiae without having Ca2+ ionophoric properties. AMF also inhibited ATP-dependent Ca2+ uptake in membrane fractions prepared from T. viride submerged mycelium. Ca-45(2+) which had been accumulated in membrane fractions in an ATP-dependent manner was released upon addition of AMF. This release was observed in light organellar fractions (LOF) of S. cerevisiae and of T. viride submerged mycelium and, to a small extent, in heavy organellar fraction (HOF) of S. cerevisiae. NoCa2+ releasing effect of AMF was observed in HOF from T. viride submerged mycelium. In S. cerevisiae expressing Ca2+-dependent photoprotein aequorin, AMF induced transients of luminescence which reflect changes in the cytoplasmic Ca2+ concentration. The results suggest that the stimulation by AMF of the Ca2+ efflux from the mycelium (cells) could be explained by an increase of the cytoplasmic Ca2+ concentration due to the release of Ca2+ from microsomal membranes or to the stimulation of Ca2+ influx.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条
  • [1] The study of components of Ca2+ homeostasis in mycoparasitic fungus Trichoderma viride
    Simkovic, M
    Krystofova, S
    Betina, V
    Varecka, L
    CHEMICAL PAPERS, 1998, 52 : 407 - 407
  • [2] Effects of agents affecting Ca2+ homeostasis on Trichoderma viride growth and conidiation
    Krystofova, S
    Varecka, L
    Betina, V
    FOLIA MICROBIOLOGICA, 1996, 41 (03) : 249 - 253
  • [3] Ca2+ fluxes in developing Trichoderma viride mycelium
    Simkovic, M
    Krystofová, S
    Varecka, L
    CANADIAN JOURNAL OF MICROBIOLOGY, 2000, 46 (04) : 312 - 324
  • [4] Ca2+ homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca2+ storage
    D'Hooge, Petra
    Coun, Catherina
    Van Eyck, Vincent
    Faes, Liesbeth
    Ghillebert, Ruben
    Marien, Lore
    Winderickx, Joris
    Callewaert, Geert
    CELL CALCIUM, 2015, 58 (02) : 226 - 235
  • [5] Cytosolic Ca2+ homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae
    Förster, C
    Kane, PM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) : 38245 - 38253
  • [6] Effects of amiodarone on K+, internal pH and Ca2+ homeostasis in Saccharomyces cerevisiae
    Pena, Antonio
    Calahorra, Martha
    Michel, Bertha
    Ramirez, Jorge
    Silvia Sanchez, Norma
    FEMS YEAST RESEARCH, 2009, 9 (06) : 832 - 848
  • [7] CA2+ TRANSPORT IN SACCHAROMYCES-CEREVISIAE
    CUNNINGHAM, KW
    FINK, GR
    JOURNAL OF EXPERIMENTAL BIOLOGY, 1994, 196 : 157 - 166
  • [8] REGULATION OF CA2+ IN SACCHAROMYCES-CEREVISIAE - CHARACTERIZATION OF VACUOLAR CA2+ TRANSPORT
    BEELER, T
    DUNN, T
    FASEB JOURNAL, 1992, 6 (01): : A237 - A237
  • [9] Cell cycle control by Ca2+ in Saccharomyces cerevisiae
    Iida, Hidetoshi
    Sakaguchi, Shuichi
    Yagawa, Yuriko
    Anraku, Yasuhiro
    1600, American Society for Biochemistry and Molecular Biology Inc., Bethesda, United States (265):
  • [10] Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles
    Ghanegolmohammadi, Farzan
    Yoshida, Mitsunori
    Ohnuki, Shinsuke
    Sukegawa, Yuko
    Okada, Hiroki
    Obara, Keisuke
    Kihara, Akio
    Suzuki, Kuninori
    Kojima, Tetsuya
    Yachie, Nozomu
    Hirata, Dai
    Ohya, Yoshikazu
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28 (23) : 3415 - 3427