On the determinant of the Laplacian matrix of a complex unit gain graph

被引:27
作者
Wang, Yi [1 ]
Gong, Shi-Cai [2 ]
Fan, Yi-Zheng [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Gain graph; Adjacency matrix; Laplacian matrix; Determinant; BIASED GRAPHS; SIGNED GRAPHS; EIGENVALUES; BALANCE;
D O I
10.1016/j.disc.2017.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a complex unit gain graph which is obtained from an undirected graph Gamma by assigning a complex unit phi(upsilon(i)upsilon(j) ) to each oriented edge upsilon(i)upsilon(j) such that phi(upsilon(i),upsilon(j))phi(upsilon(j)upsilon(1)) = 1 for all edges. The Laplacian matrix of G is defined as L(G) = D(G) A(G), where D(G) is the degree diagonal matrix of Gamma and A(G) = (a,(j)) has a(ij) = phi(upsilon(i)upsilon(j) ) if vi is adjacent to upsilon(j) and a(ij) = 0 otherwise. In this paper, we provide a combinatorial description of det(L(G)) that generalizes that for the determinant of the Laplacian matrix of a signed graph. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 31 条
[1]   The skew energy of a digraph [J].
Adiga, C. ;
Balakrishnan, R. ;
So, Wasin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) :1825-1835
[2]  
Adiga C., 2009, International Mathematical Forum, V4, P1907
[3]  
[Anonymous], ANN DISCRETE MATH
[4]   A bidirected generalization of network matrices [J].
Appa, Gautam ;
Kotnyek, Balazs .
NETWORKS, 2006, 47 (04) :185-198
[5]   On weighted directed graphs [J].
Bapat, R. B. ;
Kalita, D. ;
Pati, S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) :99-111
[6]  
Bapat RB., 1999, Linear Multilinear Algebra, V46, P299, DOI [10.1080/03081089908818623, DOI 10.1080/03081089908818623]
[7]  
Bondy J., 2008, GRADUATE TEXTS MATH
[8]   Skew-adjacency matrices of graphs [J].
Cavers, M. ;
Cioaba, S. M. ;
Fallat, S. ;
Gregory, D. A. ;
Haemers, W. H. ;
Kirkland, S. J. ;
McDonald, J. J. ;
Tsatsomeros, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4512-4529
[9]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[10]   On products and line graphs of signed graphs, their eigenvalues and energy [J].
Germina, K. A. ;
Hameed, Shahul K. ;
Zaslavsky, Thomas .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2432-2450