Hamiltonians separable in Cartesian coordinates and third-order integrals of motion

被引:88
作者
Gravel, S
机构
[1] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1063/1.1633352
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present in this article all Hamiltonian systems in E(2) that are separable in Cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-de Vries equation and the Painleve transcendents. (C) 2004 American Institute of Physics.
引用
收藏
页码:1003 / 1019
页数:17
相关论文
共 29 条
[1]  
[Anonymous], 1980, MATH METHODS CLASSIC
[2]  
Bertrand J., 1873, CR HEBD ACAD SCI, V77, P849
[3]   NONCLASSICAL SYMMETRY REDUCTIONS FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA ;
WINTERNITZ, P .
PHYSICA D, 1991, 49 (03) :257-272
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   Higher-order Painleve equations in the polynomial class I.: Bureau symbol P2 [J].
Cosgrove, CM .
STUDIES IN APPLIED MATHEMATICS, 2000, 104 (01) :1-65
[6]  
Drach J., 1935, C. R. Acad. Sci. Paris, V200, P22, DOI DOI 10.21136/CPMF.1935.121249
[7]   SUPERINTEGRABILITY OF THE WINTERNITZ SYSTEM [J].
EVANS, NW .
PHYSICS LETTERS A, 1990, 147 (8-9) :483-486
[8]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[9]   GROUP-THEORY OF THE SMORODINSKY-WINTERNITZ SYSTEM [J].
EVANS, NW .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3369-3375
[10]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+