Bifurcations of the van der Pol-Duffing oscillator

被引:0
|
作者
Pusenjak, R [1 ]
机构
[1] Univ Maribor, Fac Mech Engn, SLO-2000 Maribor, Slovenia
来源
STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING | 2003年 / 49卷 / 7-8期
关键词
incremental harmonic balance method; dynamical systems; nonlinear systems; bifurcation diagrams;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The incremental harmonic balance method has proved to be an efficient tool for computing periodic oscillations in the analysis of nonlinear dynamical systems. It was developed into a form that enables the computing of steady-state periodic response with a dependence on various variable parameters. When the bifurcation process follows a sequence of period doublings, then the periodic response is composed of subharmonic solutions of higher orders. When no more subharmonic solutions exist in the process of periodic doublings, then the periodic response becomes chaotic. The changing of the amplitudes of the periodic oscillation in dependence of the variable system parameters and the possible transition into chaos is shown in bifurcation diagrams. A general procedure for the construction of a bifurcation diagram is the used in van der Pol-Duffing oscillator for various kinds of parameters. It is proved that the van der Pol-Duffing oscillator possesses various kinds of bifurcations, which can be analyzed by using suitable strategies. (C) 2003 Journal of Mechanical Engineering. All rights reserved.
引用
收藏
页码:370 / 384
页数:15
相关论文
共 50 条
  • [1] On bifurcations and chaos in the Van der Pol-Duffing oscillator
    Bykov, VV
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1084 - 1096
  • [2] Nonresonant Hopf bifurcations of a controlled van der Pol-Duffing oscillator
    Ji, J. C.
    JOURNAL OF SOUND AND VIBRATION, 2006, 297 (1-2) : 183 - 199
  • [3] STRONGLY RESONANT BIFURCATIONS OF NONLINEARLY COUPLED VAN DER POL-DUFFING OSCILLATOR
    甘春标
    陆启韶
    黄克累
    AppliedMathematicsandMechanics(EnglishEdition), 1999, (01) : 68 - 75
  • [4] Strongly resonant bifurcations of nonlinearly coupled van der pol-duffing oscillator
    Chunbiao G.
    Qishao L.
    Kelei H.
    Applied Mathematics and Mechanics, 1999, 20 (1) : 68 - 75
  • [5] Strongly resonant bifurcations of nonlinearly coupled Van der Pol-Duffing Oscillator
    Gan, CB
    Lu, QS
    Huang, KL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (01) : 68 - 75
  • [6] A van der Pol-Duffing Oscillator with Indefinite Degree
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Zhang, Baodong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [7] A van der Pol-Duffing Oscillator with Indefinite Degree
    Hebai Chen
    Jie Jin
    Zhaoxia Wang
    Baodong Zhang
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [8] FREQUENCY RESPONSE OF A VAN DER POL-DUFFING OSCILLATOR
    HAAS, VB
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (02): : 334 - &
  • [9] On bifurcations of periodic orbits in the van der Pol-Duffing equation
    Belyakova, GV
    Belyakov, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02): : 459 - 462
  • [10] Analysis of Hopf and Takens-Bogdanov bifurcations in a modified van der Pol-Duffing oscillator
    Algaba, A.
    Freire, E.
    Gamero, E.
    Rodriguez-Luis, A.J.
    1998, Kluwer Academic Publishers, Dordrecht, Netherlands (16)