THE GRONE-MERRIS CONJECTURE

被引:43
作者
Bai, Hua [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
关键词
Grone-Merris Conjecture; Laplacian matrix; majorization; split graph; Courant-Fischer-Weyl Min-Max Principle; simplicial complex; LAPLACIAN SPECTRUM; THRESHOLD GRAPHS;
D O I
10.1090/S0002-9947-2011-05393-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In spectral graph theory, the Grone-Merris Conjecture asserts that the spectrum of the Laplacian matrix of a finite graph is majorized by the conjugate degree sequence of this graph. We give a complete proof for this conjecture.
引用
收藏
页码:4463 / 4474
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1990, Linear Multilinear Algebra
[2]  
[Anonymous], 1997, C BOARD MATH SCI
[3]  
[Anonymous], LIN MULTILIN ALG
[4]   Laplacian spectrum of weakly quasi-threshold graphs [J].
Bapat, R. B. ;
Lal, A. K. ;
Pati, Sukanta .
GRAPHS AND COMBINATORICS, 2008, 24 (04) :273-290
[5]   Shifted simplicial complexes are Laplacian integral [J].
Duval, AM ;
Reiner, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4313-4344
[7]  
Foldes S., 1977, P 8 S E C COMB GRAPH, P311
[8]  
Gale D., 1957, PAC J MATH, V7, P1073, DOI 10.2140/pjm.1957.7.1073
[9]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[10]   THE SPLITTANCE OF A GRAPH [J].
HAMMER, PL ;
SIMEONE, B .
COMBINATORICA, 1981, 1 (03) :275-284