Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification

被引:7
作者
Mendez-Liter, Juan Antonio [1 ]
Ayuso-Fernandez, Ivan [2 ]
Csarman, Florian [3 ]
de Eugenio, Laura Isabel [1 ]
Miguez, Noa [4 ]
Plou, Francisco J. [4 ]
Prieto, Alicia [1 ]
Ludwig, Roland [3 ]
Martinez, Maria Jesus [1 ]
机构
[1] CSIC, Dept Microbial & Plant Biotechnol, Ctr Invest Biol Margarita Salas, Ramiro Maeztu 9, Madrid 28040, Spain
[2] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, N-1462 As, Norway
[3] BOKU Univ Nat Resources & Life Sci, Dept Food Sci & Technol, Muthgasse 11, A-1190 Vienna, Austria
[4] CSIC, Inst Catalisis & Petr Quim, Marie Curie 2, Madrid 28049, Spain
基金
欧盟地平线“2020”;
关键词
LPMO; wheat straw; brewers spent grain; saccharification; AA9; oxidative biomass degradation; CARBOHYDRATE-BINDING MODULES; FUNCTIONAL-CHARACTERIZATION; PROTEIN STRUCTURES; HYDROLYSIS; ACID; EXPRESSION; CONVERSION;
D O I
10.3390/ijms222413611
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first lytic polysaccharide monooxygenase (LPMO) detected in the genome of the widespread ascomycete Talaromyces amestolkiae (TamAA9A) has been successfully expressed in Pichia pastoris and characterized. Molecular modeling of TamAA9A showed a structure similar to those from other AA9 LPMOs. Although fungal LPMOs belonging to the genera Penicillium or Talaromyces have not been analyzed in terms of regioselectivity, phylogenetic analyses suggested C1/C4 oxidation which was confirmed by HPAEC. To ascertain the function of a C-terminal linker-like region present in the wild-type sequence of the LPMO, two variants of the wild-type enzyme, one without this sequence and one with an additional C-terminal carbohydrate binding domain (CBM), were designed. The three enzymes (native, without linker and chimeric variant with a CBM) were purified in two chromatographic steps and were thermostable and active in the presence of H2O2. The transition midpoint temperature of the wild-type LPMO (Tm = 67.7 degrees C) and its variant with only the catalytic domain (Tm = 67.6 degrees C) showed the highest thermostability, whereas the presence of a CBM reduced it (Tm = 57.8 degrees C) and indicates an adverse effect on the enzyme structure. Besides, the potential of the different T. amestolkiae LPMO variants for their application in the saccharification of cellulosic and lignocellulosic materials was corroborated.
引用
收藏
页数:20
相关论文
共 68 条
[1]   NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions [J].
Aachmann, Finn L. ;
Sorlie, Morten ;
Skjak-Braek, Gudmund ;
Eijsink, Vincent G. H. ;
Vaaje-Kolstad, Gustav .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) :18779-18784
[2]   Discovery and Expression of Thermostable LPMOs from Thermophilic Fungi for Producing Efficient Lignocellulolytic Enzyme Cocktails [J].
Agrawal, Dhruv ;
Basotra, Neha ;
Balan, Venkatesh ;
Tsang, Adrian ;
Chadha, Bhupinder Singh .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2020, 191 (02) :463-481
[3]   The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: a versatile catalyst for biofuel production from plant and algal biomass [J].
Antonio Mendez-Liter, Juan ;
Isabel de Eugenio, Laura ;
Prieto, Alicia ;
Jesus Martinez, Maria .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
[4]   Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation [J].
Arfi, Yonathan ;
Shamshoum, Melina ;
Rogachev, Ilana ;
Peleg, Yoav ;
Bayer, Edward A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (25) :9109-9114
[5]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[6]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
[7]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[8]   Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity [J].
Borisova, Anna S. ;
Isaksen, Trine ;
Dimarogona, Maria ;
Kognole, Abhishek A. ;
Mathiesen, Geir ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Payne, Christina M. ;
Sorlie, Morten ;
Sandgren, Mats ;
Eijsink, Vincent G. H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) :22955-22969
[9]   Improved spectrophotometric assay for lytic polysaccharide monooxygenase [J].
Breslmayr, Erik ;
Daly, Sarah ;
Pozgajcic, Alen ;
Chang, Hucheng ;
Rezic, Tonci ;
Oostenbrink, Chris ;
Ludwig, Roland .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
[10]   A fast and sensitive activity assay for lytic polysaccharide monooxygenase [J].
Breslmayr, Erik ;
Hanzek, Marija ;
Hanrahan, Aoife ;
Leitner, Christian ;
Kittl, Roman ;
Santek, Bozidar ;
Oostenbrink, Chris ;
Ludwig, Roland .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11