Surface-Enhanced Raman Spectroscopy: From Concept to Practical Application

被引:0
|
作者
Kurouski, Dmitry [1 ,2 ,3 ]
Lee, Heewon [1 ]
Roschangar, Frank [1 ]
Senanayake, Chris [1 ]
机构
[1] Boehringer Ingelheim Pharmaceut Inc, 90 E Ridge POB 368, Ridgefield, CT 06877 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Texas A&M Univ, Biochem & Biophys Dept, College Stn, TX 77843 USA
关键词
PLASMON RESONANCE SPECTROSCOPY; SINGLE-PARTICLE SERS; EXCITATION SPECTROSCOPY; QUANTITATIVE SERS; SCATTERING SERS; CONCAVE NANOCUBES; HOT-SPOTS; NANOPARTICLES; GOLD; NANOSTRUCTURES;
D O I
暂无
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is broadly used in various research fields ranging from biochemistry to art conservation science. The SERS phenomenon is based on localization and amplification of photons by localized surface plasmon resonances (LSPRs) of noble metals. Over the past decade, numerous SERS platforms, including nanoparticles and SERS substrates, have been developed. However, because of a lack of commonly accepted standards of their spectroscopic characterization, it is nearly impossible to compare and validate their plasmonic performance. In this review, we discuss why it is important to report three physical parameters for any newly developed SERS platform: microscopic characterization and near- and far-field responses. We also provide a short overview of several newly developed SERS substrates that were created during the last decade. Finally, this review shows several intriguing examples of recently reported applications of SERS in plasmon-driven photocatalysis, art conservation, and forensics.
引用
收藏
页码:36 / +
页数:10
相关论文
共 50 条
  • [1] A practical approach to quantitative analytical surface-enhanced Raman spectroscopy
    Xu, Yikai
    Aljuhani, Wafaa
    Zhang, Yingrui
    Ye, Ziwei
    Li, Chunchun
    Bell, Steven E. J.
    CHEMICAL SOCIETY REVIEWS, 2025, 54 (01) : 62 - 84
  • [2] Classification and Application of Surface-enhanced Raman Spectroscopy Substrates
    Chen, Shao-Yun
    Zhang, Xing-Ying
    Liu, Ben
    Wang, Zhong-Cai
    Hu, Cheng-Long
    Chen, Jian
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (07)
  • [3] Surface-enhanced Raman spectroscopy
    Han, Xiao Xia
    Rodriguez, Rebeca S.
    Haynes, Christy L.
    Ozaki, Yukihiro
    Zhao, Bing
    NATURE REVIEWS METHODS PRIMERS, 2022, 1 (01):
  • [4] Application of Surface-Enhanced Raman Spectroscopy for Foodborne Pathogens Detection
    Wang Xiao-hui
    Xu Tao-tao
    Huang Yi-qun
    Lai Ke-qiang
    Fan Yu-xia
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (01) : 123 - 129
  • [5] Surface-Enhanced Raman Spectroscopy
    Stiles, Paul. L.
    Dieringer, Jon A.
    Shah, Nilain C.
    Van Duyne, Richard R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (601-626) : 601 - 626
  • [6] Application of Au/Ag Composite Nanocages in Surface-enhanced Raman Spectroscopy
    Wang Meng
    Yan Xin
    Wei Dequan
    Liang Lanju
    Wang Yueping
    ACTA CHIMICA SINICA, 2019, 77 (02) : 184 - 188
  • [7] Surface-enhanced Raman Spectroscopy
    Nishino, Tomoaki
    ANALYTICAL SCIENCES, 2018, 34 (09) : 1061 - 1062
  • [8] Quantitative Analysis of Surface-Enhanced Raman Spectroscopy
    Tao Qin
    Dong Jian
    Qian Weiping
    PROGRESS IN CHEMISTRY, 2013, 25 (06) : 1031 - 1041
  • [9] Surface-enhanced Raman spectroscopy in forensic analysis
    Holman, Aidan P.
    Kurouski, Dmitry
    REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 43 (01)
  • [10] Fullerene nanosheets for surface-enhanced Raman spectroscopy
    Yang, Linchangqing
    Li, Yahui
    Liu, Wei
    Zhang, Junhao
    Kong, Qinghong
    Xi, Guangcheng
    CHEMPHYSMATER, 2025, 4 (01): : 86 - 90