Feasibility Study for Future Spaceborne Coherent Doppler Wind Lidar, Part 2: Measurement Simulation Algorithms and Retrieval Error Characterization

被引:17
作者
Baron, Philippe [1 ]
Ishii, Shoken [1 ]
Okamoto, Kozo [2 ]
Gamo, Kyoka [3 ]
Mizutani, Kohei [1 ]
Takahashi, Chikako [3 ]
Itabe, Toshikazu [1 ]
Iwasaki, Toshiki [4 ]
Kubota, Takuji [5 ]
Maki, Takashi [2 ]
Oki, Riko [5 ]
Ochiai, Satoshi [1 ]
Sakaizawa, Daisuke [5 ]
Satoh, Masaki [6 ]
Satoh, Yohei [7 ]
Tanaka, Taichu Y. [2 ]
Yasui, Motoaki [8 ]
机构
[1] Natl Inst Informat & Commun Technol, Appl Electromagnet Res Inst, 4-2-1,Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
[2] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan
[3] Fujitsu FIP Corp, Tokyo, Japan
[4] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi, Japan
[5] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan
[6] Univ Tokyo, Kashiwa, Chiba, Japan
[7] Japan Aerosp Explorat Agcy, Satellite Technol Innovat Off, Tsukuba, Ibaraki, Japan
[8] Natl Inst Informat & Commun Technol, Social Innovat Unit, Strateg Program Produce Off, Koganei, Tokyo, Japan
关键词
Doppler lidar; satellite; remote sensing; wind; aerosol; simulation; BACKSCATTER HETERODYNE LIDAR; DIFFERENTIAL ABSORPTION; AEROSOL OBSERVATIONS; PERFORMANCE; VELOCITY; WEATHER; ACCUMULATION; OPTIMIZATION; PREDICTION; TURBULENCE;
D O I
10.2151/jmsj.2017-018
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A feasibility study of tropospheric wind measurements using a coherent Doppler lidar aboard a super low altitude satellite is being conducted in Japan. The considered lidar uses a 2.05 mu m laser light source of 3.75 W. In order to assess the measurement performances, simulations of wind measurements were conducted. The mission definition is presented in a companion paper (Part 1) while, in this paper, we describe the measurement simulator and characterize the errors on the retrieved line-of-sight (LOS) winds. Winds are retrieved from the Doppler-shift of the noisy backscattered signal with a horizontal resolution of 100 km along the orbit track and a vertical resolution between 0.5 and 2 km. Cloud and wind fields are the pseudo-truth of an Observing System Simulation Experiment while aerosol data are from the Model-of-Aerosol-Species-IN-the-Global-AtmospheRe (MASINGAR) constrained with the pseudo-truth wind. We present the results of the analysis of a full month of data in summer time for a near-polar orbiting satellite and a LOS nadir angle of 35 degrees. Below approximate to 8 km, the ratio of good retrievals is 30-55 % and the median LOS wind error is better than 0.6 m s(-1) (1.04 m s(-1) for the horizontal wind). In the upper troposphere, the ratio is less than 15 % in the southern hemisphere and high-latitudes. However, the ratio is still 35 % in the northern Tropics and mid-latitudes where ice-clouds frequently occur. The upper-tropospheric median LOS-wind measurement error is between 1-2 m s(-1) depending on the latitude (1.74-3.5 m s(-1) for the horizontal wind). These errors are dominated by uncertainties induced by spatial atmospheric inhomogeneities.
引用
收藏
页码:319 / 342
页数:24
相关论文
共 51 条
[1]  
[Anonymous], 2003, Papers in Meteorology and Geophysics, V53, P119, DOI [DOI 10.2467/MRIPAPERS.53.119, 10.2467/mripapers.53.119]
[2]   LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System [J].
Baker, Wayman E. ;
Atlas, Robert ;
Cardinali, Carla ;
Clement, Amy ;
Emmitt, George D. ;
Gentry, Bruce M. ;
Hardesty, R. Michael ;
Kaellen, Erland ;
Kavaya, Michael J. ;
Langland, Rolf ;
Ma, Zaizhong ;
Masutani, Michiko ;
McCarty, Will ;
Pierce, R. Bradley ;
Pu, Zhaoxia ;
Riishojgaard, Lars Peter ;
Ryan, James ;
Tucker, Sara ;
Weissmann, Martin ;
Yoe, James G. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (04) :543-564
[3]  
BAKER WE, 1995, B AM METEOROL SOC, V76, P869, DOI 10.1175/1520-0477(1995)076<0869:LMWFSA>2.0.CO
[4]  
2
[5]   Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009-2010 [J].
Baron, P. ;
Murtagh, D. P. ;
Urban, J. ;
Sagawa, H. ;
Ochiai, S. ;
Kasai, Y. ;
Kikuchi, K. ;
Khosrawi, F. ;
Kornich, H. ;
Mizobuchi, S. ;
Sagi, K. ;
Yasui, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (12) :6049-6064
[6]   Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS [J].
Becker, J. J. ;
Sandwell, D. T. ;
Smith, W. H. F. ;
Braud, J. ;
Binder, B. ;
Depner, J. ;
Fabre, D. ;
Factor, J. ;
Ingalls, S. ;
Kim, S-H. ;
Ladner, R. ;
Marks, K. ;
Nelson, S. ;
Pharaoh, A. ;
Trimmer, R. ;
Von Rosenberg, J. ;
Wallace, G. ;
Weatherall, P. .
MARINE GEODESY, 2009, 32 (04) :355-371
[7]   Complementary study of differential absorption lidar optimization in direct and heterodyne detections [J].
Bruneau, Didier ;
Gibert, Fabien ;
Flamant, Pierre H. ;
Pelon, Jacques .
APPLIED OPTICS, 2006, 45 (20) :4898-4908
[8]   How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models [J].
Cesana, G. ;
Chepfer, H. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[9]   Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP [J].
Cesana, Gregory ;
Chepfer, Helene .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (14) :7922-7937
[10]  
Chepfer H., 2012, J ATMOS OCEANIC TECH