Large-Conductance Transmembrane Porin Made from DNA Origami

被引:152
作者
Gopfrich, Kerstin [1 ]
Li, Chen-Yu [2 ]
Ricci, Maria [1 ]
Bhamidimarri, Satya Prathyusha [3 ]
Yoo, Jejoong [2 ]
Gyenes, Bertalan [1 ]
Ohmann, Alexander [1 ]
Winterhalter, Mathias [3 ]
Aksimentiev, Aleksei [2 ]
Keyser, Ulrich F. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Illinois, Dept Phys, Ctr Phys Living Cells, 1110 West Green St, Urbana, IL 61801 USA
[3] Jacobs Univ Bremen, D-28759 Bremen, Germany
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
DNA origami; lipid membrane; synthetic porin; ionic current recordings; molecular dynamics; MOLECULAR-DYNAMICS; MEMBRANE; NANOPORES; CHANNELS; TRANSLOCATION; SIMULATION; ALGORITHM; TRANSPORT; VERSION; SHAPES;
D O I
10.1021/acsnano.6b03759
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane: to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the. DNA porin into the lipid membrane, creating a transmethbrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins' large ionic conductance.
引用
收藏
页码:8207 / 8214
页数:8
相关论文
共 48 条
  • [11] BIOPHYSICAL PROPERTIES OF PORIN PORES FROM MITOCHONDRIAL OUTER-MEMBRANE OF EUKARYOTIC CELLS
    BENZ, R
    [J]. EXPERIENTIA, 1990, 46 (02): : 131 - 137
  • [12] Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore
    Bhattacharya, Swati
    Yoo, Jejoong
    Aksimentiev, Aleksei
    [J]. ACS NANO, 2016, 10 (04) : 4644 - 4651
  • [13] Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
  • [14] Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor
    Burns, Jonathan R.
    Goepfrich, Kerstin
    Wood, James W.
    Thacker, Vivek V.
    Stulz, Eugen
    Keyser, Ulrich F.
    Howorka, Stefan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (46) : 12069 - 12072
  • [15] Self-Assembled DNA Nanopores That Span Lipid Bilayers
    Burns, Jonathan R.
    Stulz, Eugen
    Howorka, Stefan
    [J]. NANO LETTERS, 2013, 13 (06) : 2351 - 2356
  • [16] DNA Nanostructures on Membranes as Tools for Synthetic Biology
    Czogalla, Aleksander
    Franquelim, Henri G.
    Schwille, Petra
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (08) : 1698 - 1707
  • [17] Rapid prototyping of 3D DNA-origami shapes with caDNAno
    Douglas, Shawn M.
    Marblestone, Adam H.
    Teerapittayanon, Surat
    Vazquez, Alejandro
    Church, George M.
    Shih, William M.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (15) : 5001 - 5006
  • [18] CONSTANT-PRESSURE MOLECULAR-DYNAMICS SIMULATION - THE LANGEVIN PISTON METHOD
    FELLER, SE
    ZHANG, YH
    PASTOR, RW
    BROOKS, BR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (11) : 4613 - 4621
  • [19] DNA-Tile Structures Induce Ionic Currents through Lipid Membranes
    Goepfrich, Kerstin
    Zettl, Thomas
    Meijering, Anna E. C.
    Hernandez-Ainsa, Silvia
    Kocabey, Samet
    Liedl, Tim
    Keyser, Ulrich F.
    [J]. NANO LETTERS, 2015, 15 (05) : 3134 - 3138
  • [20] Lipid Nanobilayers to Host Biological Nanopores for DNA Translocations
    Goepfrich, Kerstin
    Kulkarni, Chandrashekhar V.
    Pambos, Oliver J.
    Keyser, Ulrich F.
    [J]. LANGMUIR, 2013, 29 (01) : 355 - 364