Large-Conductance Transmembrane Porin Made from DNA Origami

被引:152
作者
Gopfrich, Kerstin [1 ]
Li, Chen-Yu [2 ]
Ricci, Maria [1 ]
Bhamidimarri, Satya Prathyusha [3 ]
Yoo, Jejoong [2 ]
Gyenes, Bertalan [1 ]
Ohmann, Alexander [1 ]
Winterhalter, Mathias [3 ]
Aksimentiev, Aleksei [2 ]
Keyser, Ulrich F. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Illinois, Dept Phys, Ctr Phys Living Cells, 1110 West Green St, Urbana, IL 61801 USA
[3] Jacobs Univ Bremen, D-28759 Bremen, Germany
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
DNA origami; lipid membrane; synthetic porin; ionic current recordings; molecular dynamics; MOLECULAR-DYNAMICS; MEMBRANE; NANOPORES; CHANNELS; TRANSLOCATION; SIMULATION; ALGORITHM; TRANSPORT; VERSION; SHAPES;
D O I
10.1021/acsnano.6b03759
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane: to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the. DNA porin into the lipid membrane, creating a transmethbrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins' large ionic conductance.
引用
收藏
页码:8207 / 8214
页数:8
相关论文
共 48 条
  • [1] Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map
    Aksimentiev, A
    Schulten, K
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (06) : 3745 - 3761
  • [2] Microscopic kinetics of DNA translocation through synthetic nanopores
    Aksimentiev, A
    Heng, JB
    Timp, G
    Schulten, K
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (03) : 2086 - 2097
  • [3] Deciphering ionic current signatures of DNA transport through a nanopore
    Aksimentiev, Aleksei
    [J]. NANOSCALE, 2010, 2 (04) : 468 - 483
  • [4] Alberts B., 2002, Molecular Biology of the Cell. (4th edition), V4th ed
  • [6] LIPOSOME ELECTROFORMATION
    ANGELOVA, MI
    DIMITROV, DS
    [J]. FARADAY DISCUSSIONS, 1986, 81 : 303 - +
  • [7] [Anonymous], 1992, Version 3.1: a system for X-ray crystallography and NMR
  • [8] Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations
    Batcho, PF
    Case, DA
    Schlick, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) : 4003 - 4018
  • [9] DNA Origami Nanopores
    Bell, Nicholas A. W.
    Engst, Christian. R.
    Ablay, Marc
    Divitini, Giorgio
    Ducati, Caterina
    Liedl, Tim
    Keyser, Ulrich F.
    [J]. NANO LETTERS, 2012, 12 (01) : 512 - 517
  • [10] Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes
    Bennett, W. F. Drew
    Tieleman, D. Peter
    [J]. JOURNAL OF LIPID RESEARCH, 2012, 53 (03) : 421 - 429