Accelerating Minimum Entropy Autofocus With Stochastic Gradient for UAV SAR Imagery

被引:9
作者
Meng, Zhichao [1 ]
Zhang, Lei [1 ]
Ma, Yan [2 ]
Wang, Guanyong [3 ]
Jiang, Hejun [4 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Commun Engn, Shenzhen 510275, Peoples R China
[2] Beijing Inst Tracking Telemetry & Telecommun, Beijing 100094, Peoples R China
[3] Beijing Inst Radio Measurement, Beijing 100854, Peoples R China
[4] Sci & Technol Near Surface Detect Lab, Wuxi 214035, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar polarimetry; Synthetic aperture radar; Entropy; Unmanned aerial vehicles; Error analysis; Azimuth; Estimation; Minimum entropy autofocusing (MEA); stochastic gradient (SG); synthetic aperture radar (SAR); unmanned aerial vehicle (UAV); MINIMIZATION;
D O I
10.1109/LGRS.2021.3106636
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Minimum entropy autofocus (MEA) has been applied in unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) imagery for its robustness in different circumstances. However, large amount of range cell samples to calculate the gradient for the minimum entropy optimization keeps its optimal convergence, which usually degrades the efficiency in real UAV SAR applications. In this letter, accelerated minimum entropy autofocus is proposed, which leverages both high computational efficiency and phase error estimation precision simultaneously. A strategy of stochastic gradient (SG) calculation is introduced in the MEA optimization with randomly selecting samples in each iteration through a probability distribution function (PDF). Experimental results with real UAV SAR data have validated the superior performance of the proposed SG-MEA algorithm.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Autofocusing of inverse synthetic aperture radar images using contrast optimization [J].
Berizzi, F ;
Corsini, G .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (03) :1185-1191
[2]   A Motion Compensation Strategy for Airborne Repeat-Pass SAR Data [J].
Brancato, Virginia ;
Jaeger, Marc ;
Scheiber, Rolf ;
Hajnsek, Irena .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) :1580-1584
[3]  
Carrara W., 1995, Spot light Synthetic Aperture Radar Signal Processing Algorithms
[4]   High-Dimensional Stochastic Gradient Quantization for Communication-Efficient Edge Learning [J].
Du, Yuqing ;
Yang, Sheng ;
Huang, Kaibin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :2128-2142
[5]   An Improved Map-Drift Algorithm for Unmanned Aerial Vehicle SAR Imaging [J].
Huang, Yan ;
Liu, Feiyang ;
Chen, Zhanye ;
Li, Jie ;
Hong, Wei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) :1966-1970
[6]  
Kragh T. J., 2006, P AD SENS ARR PROC A, V40, P1147
[7]   Use of genetic algorithms in ISAR imaging of targets with higher order motions [J].
Li, JF ;
Ling, H .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2003, 39 (01) :343-351
[8]   Azimuth Migration-Corrected Phase Gradient Autofocus for Bistatic SAR Polar Format Imaging [J].
Miao, Yuxuan ;
Wu, Junjie ;
Yang, Jianyu .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (04) :697-701
[9]   Generalisation of inverse synthetic aperture radar autofocusing methods based on the minimisation of the Renyi entropy [J].
Munoz-Ferreras, J. M. ;
Perez-Martinez, F. ;
Datcu, M. .
IET RADAR SONAR AND NAVIGATION, 2010, 4 (04) :586-594
[10]   Parametric inverse synthetic aperture radar manoeuvring target motion compensation based on particle swarm optimiser [J].
Peng, S. -B. ;
Xu, J. ;
Peng, Y. -N. ;
Xiang, J. -B. .
IET RADAR SONAR AND NAVIGATION, 2011, 5 (03) :305-314