Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

被引:6
作者
Aiken, Allison C. [1 ]
McMeeking, Gavin R. [2 ,3 ]
Levin, Ezra J. T. [2 ]
Dubey, Manvendra K. [1 ]
DeMott, Paul J. [2 ]
Kreidenweis, Sonia M. [2 ]
机构
[1] Los Alamos Natl Lab, Earth Syst Observat, Earth & Environm Sci, Los Alamos, NM 87545 USA
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[3] Handix Sci, Boulder, CO USA
关键词
LIGHT-ABSORPTION; PHOTOACOUSTIC SPECTROMETER; CCN ACTIVATION; MIXING STATE; AEROSOL; CALIBRATION; VAPORIZATION; VALIDATION; GENERATION; ICE;
D O I
10.1080/02786826.2016.1173647
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory using the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100-500 nm diameter, 0.44-36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 +/- 18.6% and 87.3 +/- 21.9%, respectively. Removal of Aquadag is efficient for particles > 100 nm mass-equivalent diameter (d(me)), enabling application for microphysical studies. However, the removal of particles <= 100 nm d(me) is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. The results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).
引用
收藏
页码:679 / 692
页数:14
相关论文
共 56 条
[1]   Integrating nephelometer with a low truncation angle and an extended calibration scheme [J].
Abu-Rahmah, A. ;
Arnott, W. P. ;
Moosmuller, H. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (07) :1723-1732
[2]   Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques [J].
不详 .
AEROSOL SCIENCE AND TECHNOLOGY, 2011, 45 (02) :295-312
[3]   Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols [J].
Arnott, WP ;
Moosmüller, H ;
Walker, JW .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (12) :4545-4552
[4]  
Arnott WP, 1999, ATMOS ENVIRON, V33, P2845
[5]   Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations [J].
Baumgardner, D. ;
Popovicheva, O. ;
Allan, J. ;
Bernardoni, V. ;
Cao, J. ;
Cavalli, F. ;
Cozic, J. ;
Diapouli, E. ;
Eleftheriadis, K. ;
Genberg, P. J. ;
Gonzalez, C. ;
Gysel, M. ;
John, A. ;
Kirchstetter, T. W. ;
Kuhlbusch, T. A. J. ;
Laborde, M. ;
Lack, D. ;
Mueller, T. ;
Niessner, R. ;
Petzold, A. ;
Piazzalunga, A. ;
Putaud, J. P. ;
Schwarz, J. ;
Sheridan, P. ;
Subramanian, R. ;
Swietlicki, E. ;
Valli, G. ;
Vecchi, R. ;
Viana, M. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (08) :1869-1887
[6]   SOOT-VISUALIZATION STRATEGIES USING LASER TECHNIQUES - LASER-INDUCED FLUORESCENCE IN C2 FROM LASER-VAPORIZED SOOT AND LASER-INDUCED SOOT INCANDESCENCE [J].
BENGTSSON, PE ;
ALDEN, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 1995, 60 (01) :51-59
[7]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[8]   Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion [J].
Bond, TC .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (21) :4075-4078
[9]  
Borghesi A., 1991, HDB OPTICAL CONSTANT, P449
[10]   Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon [J].
Cappa, Christopher D. ;
Onasch, Timothy B. ;
Massoli, Paola ;
Worsnop, Douglas R. ;
Bates, Timothy S. ;
Cross, Eben S. ;
Davidovits, Paul ;
Hakala, Jani ;
Hayden, Katherine L. ;
Jobson, B. Tom ;
Kolesar, Katheryn R. ;
Lack, Daniel A. ;
Lerner, Brian M. ;
Li, Shao-Meng ;
Mellon, Daniel ;
Nuaaman, Ibraheem ;
Olfert, Jason S. ;
Petaja, Tuukka ;
Quinn, Patricia K. ;
Song, Chen ;
Subramanian, R. ;
Williams, Eric J. ;
Zaveri, Rahul A. .
SCIENCE, 2012, 337 (6098) :1078-1081