Nondeterministic NC1 computation

被引:63
作者
Caussinus, H
McKenzie, P
Therien, D
Vollmer, H
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
[2] Univ Calif Santa Barbara, Dept Matemat, Santa Barbara, CA 93105 USA
[3] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[4] Univ Wurzburg, D-97072 Wurzburg, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jcss.1998.1588
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We define the counting classes #NC1, GapNC(1), PNC1, and C=NC1. We prove that boolean circuits, algebraic circuits, programs over nondeterministic finite automata, and programs over constant integer matrices yield equivalent definitions of the latter three classes. We investigate closure properties. We observe that #NC1 subset of or equal to #L, that PNC1 subset of or equal to L, and that C=NC1 subset of or equal to L. Then we exploit our finite automaton model and extend the padding techniques used to investigate leaf languages, Finally, we draw some consequences from the resulting body of leaf language characterizations of complexity classes, including the unconditional separations of ACC(0) from MOD-PH and that of TC0 from the counting hierarchy. Moreover, we obtain that if dlogtime-uniformity and logspace-uniformity for AC(0) coincide then the polynomial time hierarchy equals PSPACE. (C) 1998 Academic Press.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 39 条
[1]   A UNIFORM CIRCUIT LOWER-BOUND FOR THE PERMANENT [J].
ALLENDER, E ;
GORE, V .
SIAM JOURNAL ON COMPUTING, 1994, 23 (05) :1026-1049
[2]  
ALLENDER E, 1994, STRUCT COMPL TH CONF, P267, DOI 10.1109/SCT.1994.315797
[3]  
ALLENDER E, 1991, LECT NOTES COMPUTER, V529, P1
[4]  
ALLENDER E, 1996, LECT NOTES COMPUTER, V1090, P127
[5]   A VERY HARD LOG-SPACE COUNTING CLASS [J].
ALVAREZ, C ;
JENNER, B .
THEORETICAL COMPUTER SCIENCE, 1993, 107 (01) :3-30
[7]   FINITE MONOIDS AND THE FINE-STRUCTURE OF NC1 [J].
BARRINGTON, DAM ;
THERIEN, D .
JOURNAL OF THE ACM, 1988, 35 (04) :941-952
[8]   ON UNIFORMITY WITHIN NC1 [J].
BARRINGTON, DAM ;
IMMERMAN, N ;
STRAUBING, H .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1990, 41 (03) :274-306
[9]   EXTENSIONS TO BARRINGTON M-PROGRAM MODEL [J].
BEDARD, F ;
LEMIEUX, F ;
MCKENZIE, P .
THEORETICAL COMPUTER SCIENCE, 1993, 107 (01) :31-61
[10]  
Beigel R., 1991, P ACM S THEORY COMPU, P1, DOI 10.1145/103418.103426.