The first module (σ, τ)-cohomology group of triangular Banach algebras of order three

被引:1
作者
Inceboz, Hulya [1 ]
Arslan, Berna [1 ]
机构
[1] Adnan Menderes Univ, Dept Math, Aydin, Turkey
关键词
Triangular Banach algebras of order three; module; (sigma; tau)-amenability; weak module (sigma; inverse semigroups; AMENABILITY;
D O I
10.1142/S0219498818502250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of module amenability for a class of Banach algebras, which could be considered as a generalization of Johnson's amenability, was introduced by Amini in [Module amenability for semigroup algebras, Semigroup Forum 69 (2004) 243-254]. The weak module amenability of the triangular Banach algebra T-2 = [GRAPHICS] , where A and B are Banach algebras (with U-module structure) and M is a Banach A, B-module, is studied by Pourabbas and Nasrabadi in [Weak module amenability of triangular Banach algebras, Math. Slovaca 61(6) (2011) 949-958], and they showed that the weak module amenability of 2 x 2 triangular Banach algebra T-2 (as an I := { [GRAPHICS] vertical bar alpha is an element of U}- bimodule) is equivalent with the weak module amenability of the corner algebras A and B (as Banach U-bimodules). The main aim of this paper is to investigate the module (sigma, tau)-amenability and weak module (sigma, tau) -amenability of the triangular Banach algebra T of order three, where sigma and tau are U-module morphisms on T. Also, we give some results for semigroup algebras.
引用
收藏
页数:24
相关论文
共 35 条
  • [1] GENERALIZED COHOMOLOGY GROUP OF TRIANGULAR BANACH ALGEBRAS OF ORDER THREE
    Motlagh, Abolfazl Niazi
    Bodaghi, Abasalt
    Tanha, Somaye Grailoo
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (01): : 105 - 121
  • [2] VANISHING OF THE FIRST (sigma, tau)-COHOMOLOGY GROUP OF TRIANGULAR BANACH ALGEBRAS
    Khosravi, M.
    Moslehian, M. S.
    Motlagh, A. N.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (04): : 351 - 360
  • [3] First Module Cohomology Group of Induced Semigroup Algebras
    Miri, Mohammad Reza
    Nasrabadi, Ebrahim
    Kazemi, Kianoush
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 13 - 13
  • [4] The Equality of Hochschild Cohomology Group and Module Cohomology Group for Semigroup Algebras
    Nasrabadi, Ebrahim
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [5] THE STRUCTURE OF MODULE LIE DERIVATIONS ON TRIANGULAR BANACH ALGEBRAS
    Miri, M. R.
    Nasrabadi, E.
    Ghorchizadeh, A. R.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2023, 11 (01):
  • [6] THE FIRST COHOMOLOGY GROUP OF BANACH INVERSE SEMIGROUP ALGEBRAS WITH COEFFICIENTS IN L-EMBEDDED BANACH BIMODULES
    Ghahramani, Hoger
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) : 488 - 495
  • [7] MODULE COHOMOLOGY GROUP OF INVERSE SEMIGROUP ALGEBRAS
    Nasrabadi, E.
    Pourabbas, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (04): : 157 - 169
  • [8] n-WEAK MODULE AMENABILITY OF TRIANGULAR BANACH ALGEBRAS
    Bodaghi, Abasalt
    Jabbari, Ali
    MATHEMATICA SLOVACA, 2015, 65 (03) : 645 - 666
  • [9] Second module cohomology group of inverse semigroup algebras
    Nasrabadi, E.
    Pourabbas, A.
    SEMIGROUP FORUM, 2010, 81 (02) : 269 - 276
  • [10] Second Module Cohomology Group of Induced Semigroup Algebras
    Miri, Mohammad Reza
    Nasrabadi, Ebrahim
    Kazemi, Kianoush
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (02): : 73 - 84