Quantum affine algebras at roots of unity and equivariant K-theory

被引:2
|
作者
Schiffmann, O [1 ]
机构
[1] Ecole Normale Super, F-75005 Paris, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 05期
关键词
D O I
10.1016/S0764-4442(99)80018-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the algebra homomorphism U-q (<(gl)over cap>(n)) --> K-GLd x C* (Z) x C(q) constructed by Ginzburg and Vasserot between the quantum affine algebra of type gl(n) and the equivariant K-theory group of the Steinberg variety (of incomplete flags), specializes to a surjective homomorphism U-epsilon(res) (<(gl)over cap>(n)) --> K-epsilon(GLd x C)* (Z). In particular, this shows that the parameterization of irreducible U-epsilon(res) (<(sl)over cap>(n))-modules and the multiplicity formulaes of [6], [8] are still valid when epsilon is a root of unity. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条