Predicting black spruce fuel characteristics with Airborne Laser Scanning (ALS)

被引:10
|
作者
Cameron, H. A. [1 ]
Schroeder, D. [2 ]
Beverly, J. L. [1 ]
机构
[1] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2H1, Canada
[2] Govt Alberta, Wildfire Management Branch, Alberta Agr & Forestry, Edmonton, AB T6H 3S5, Canada
关键词
remote sensing; fire behaviour; boreal ecosystems; fuel; planning; fuel maps; LiDAR; airborne laser scanning; FOREST STRUCTURE; TREE DETECTION; FIRE BEHAVIOR; LIDAR; PINE; INVENTORIES; DELINEATION; ATTRIBUTES; PARAMETERS; VARIABLES;
D O I
10.1071/WF21004
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Wildfire decision support systems combine fuel maps with other fire environment variables to predict fire behaviour and guide management actions. Until recently, financial and technological constraints have limited provincial fuel maps to relatively coarse spatial resolutions. Airborne Laser Scanning (ALS), a remote sensing technology that uses LiDAR (Light Detection and Ranging), is becoming an increasingly affordable and pragmatic tool for mapping fuels across localised and broad areas. Few studies have used ALS in boreal forest regions to describe structural attributes such as fuel load at a fine resolution (i.e. <100 m(2) cell resolution). We used ALS to predict five forest attributes relevant to fire behaviour in black spruce (Picea mariana) stands in Alberta, Canada: canopy bulk density, canopy fuel load, stem density, canopy height and canopy base height. Least absolute shrinkage and selection operator (lasso) regression models indicated statistically significant relationships between ALS data and the forest metrics of interest (R-2 >= 0.81 for all metrics except canopy base height which had a R-2 value of 0.63). Performance of the regression models was acceptable and consistent with prior studies when applied to test datasets; however, regression models presented in this study mapped stand attributes at a much finer resolution (40 m(2)).
引用
收藏
页码:124 / 135
页数:12
相关论文
共 50 条
  • [31] Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives
    Marchi, Niccolo
    Pirotti, Francesco
    Lingua, Emanuele
    REMOTE SENSING, 2018, 10 (09)
  • [32] Neural Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser Scanning and Aerial Photographs
    Niska, Harri
    Skon, Jukka-Pekka
    Packalen, Petteri
    Tokola, Timo
    Maltamo, Matti
    Kolehmainen, Mikko
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03): : 1076 - 1085
  • [33] Site index determination using a time series of airborne laser scanning data
    Moan, Maria asnes
    Bollandsas, Ole Martin
    Saarela, Svetlana
    Gobakken, Terje
    Naesset, Erik
    Orka, Hans Ole
    Noordermeer, Lennart
    FOREST ECOSYSTEMS, 2025, 12
  • [34] Recreating structurally realistic tree maps with airborne laser scanning and ground measurements
    Kostensalo, J.
    Mehtatalo, L.
    Tuominen, S.
    Packalen, P.
    Myllymaki, M.
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [35] Predicting bilberry and cowberry yields using airborne laser scanning and other auxiliary data combined with National Forest Inventory field plot data
    Bohlin, Inka
    Maltamo, Matti
    Hedenas, Henrik
    Lamas, Tomas
    Dahlgren, Jonas
    Mehtatalo, Lauri
    FOREST ECOLOGY AND MANAGEMENT, 2021, 502
  • [36] OPALS - A framework for Airborne Laser Scanning data analysis
    Pfeifer, N.
    Mandlburger, G.
    Otepka, J.
    Karel, W.
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2014, 45 : 125 - 136
  • [37] Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest
    Silva, Carlos Alberto
    Klauberg, Carine
    Hudak, Andrew Thomas
    Vierling, Lee Alexander
    Jaafar, Wan Shafrina Wan Mohd
    Mohan, Midhun
    Garcia, Mariano
    Ferraz, Antonio
    Cardil, Adrian
    Saatchi, Sassan
    FORESTS, 2017, 8 (07):
  • [38] Sparse Bayesian estimation of forest stand characteristics from airborne laser scanning
    Junttila, Virpi
    Maltamo, Matti
    Kauranne, Tuomo
    FOREST SCIENCE, 2008, 54 (05) : 543 - 552
  • [39] Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data
    Kandare, Kaja
    Orka, Hans Ole
    Dalponte, Michele
    Naesset, Erik
    Gobakken, Terje
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 60 : 72 - 82
  • [40] Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure
    Rodriguez-Vivancos, Alejandro
    Antonio Manzanera, Jose
    Martin-Fernandez, Susana
    Garcia-Cimarras, Alba
    Garcia-Abril, Antonio
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2022, 141 (03) : 447 - 465