A test of an optimal stomatal conductance scheme within the CABLE land surface model

被引:139
作者
De Kauwe, M. G. [1 ]
Kala, J. [2 ,3 ]
Lin, Y. -S. [1 ]
Pitman, A. J. [2 ,3 ]
Medlyn, B. E. [1 ]
Duursma, R. A. [4 ]
Abramowitz, G. [2 ,3 ]
Wang, Y. -P. [5 ]
Miralles, D. G. [6 ,7 ]
机构
[1] Macquarie Univ, Sydney, NSW 2109, Australia
[2] Univ New S Wales, Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia
[4] Univ Western Sydney, Hawkesbury Inst Environm, Sydney, NSW, Australia
[5] CSIRO Ocean & Atmosphere Flagship, Aspendale, Vic 3195, Australia
[6] Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands
[7] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
VAPOR-PRESSURE DEFICIT; GLOBAL CLIMATE MODEL; WATER-USE EFFICIENCY; ATMOSPHERIC CO2; COVER CHANGE; PHOTOSYNTHESIS; LEAF; TRANSPIRATION; RESPONSES; FOREST;
D O I
10.5194/gmd-8-431-2015
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Stomatal conductance (g(s)) affects the fluxes of carbon, energy and water between the vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal conductance model within the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model (LSM). In common with many LSMs, CABLE does not differentiate between g(s) model parameters in relation to plant functional type (PFT), but instead only in relation to photosynthetic pathway. We constrained the key model parameter "g(i)", which represents plant water use strategy, by PFT, based on a global synthesis of stomatal behaviour. As proof of concept, we also demonstrate that the gi parameter can be estimated using two long-term average (1960-1990) bioclimatic variables: (i) temperature and (ii) an indirect estimate of annual plant water availability. The new stomatal model, in conjunction with PFT parameterisations, resulted in a large reduction in annual fluxes of transpiration ( 30% compared to the standard CABLE simulations) across evergreen needleleaf, tundra and C4 grass regions. Differences in other regions of the globe were typically small. Model performance against upscaled data products was not degraded, but did not noticeably reduce existing model data biases. We identified assumptions relating to the coupling of the vegetation to the atmosphere and the parameterisation of the minimum stomatal conductance as areas requiring further investigation in both CABLE and potentially other LSMs. We conclude that optimisation theory can yield a simple and tractable approach to predicting stomatal conductance in LSMs.
引用
收藏
页码:431 / 452
页数:22
相关论文
共 91 条
[1]   Towards a public, standardized, diagnostic benchmarking system for land surface models [J].
Abramowitz, G. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (03) :819-827
[2]   Evaluating the Performance of Land Surface Models [J].
Abramowitz, Gab ;
Leuning, Ray ;
Clark, Martyn ;
Pitman, Andy .
JOURNAL OF CLIMATE, 2008, 21 (21) :5468-5481
[3]   Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration -: art. no. 1005 [J].
Arneth, A ;
Lloyd, J ;
Santrucková, H ;
Bird, M ;
Grigoryev, S ;
Kalaschnikov, YN ;
Gleixner, G ;
Schulze, ED .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (01)
[4]  
Ball JT., 1987, PROGR PHOTOSYNTHESIS, P221, DOI [DOI 10.1007/978-94-017-0519-6_48, 10.1007/978-94-017-0519]
[5]   The implications of minimum stomatal conductance on modeling water flux in forest canopies [J].
Barnard, D. M. ;
Bauerle, W. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2013, 118 (03) :1322-1333
[6]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[7]   Projected increase in continental runoff due to plant responses to increasing carbon dioxide [J].
Betts, Richard A. ;
Boucher, Olivier ;
Collins, Matthew ;
Cox, Peter M. ;
Falloon, Peter D. ;
Gedney, Nicola ;
Hemming, Deborah L. ;
Huntingford, Chris ;
Jones, Chris D. ;
Sexton, David M. H. ;
Webb, Mark J. .
NATURE, 2007, 448 (7157) :1037-U5
[8]   Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum [J].
Bonan, G. B. ;
Williams, M. ;
Fisher, R. A. ;
Oleson, K. W. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (05) :2193-2222
[9]   High sensitivity of future global warming to land carbon cycle processes [J].
Booth, Ben B. B. ;
Jones, Chris D. ;
Collins, Mat ;
Totterdell, Ian J. ;
Cox, Peter M. ;
Sitch, Stephen ;
Huntingford, Chris ;
Betts, Richard A. ;
Harris, Glen R. ;
Lloyd, Jon .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (02)
[10]   A hydromechanical and biochemical model of stomatal conductance [J].
Buckley, TN ;
Mott, KA ;
Farquhar, GD .
PLANT CELL AND ENVIRONMENT, 2003, 26 (10) :1767-1785