An Eigenvalue of Anisotropic Discrete Problem with Three Variable Exponents

被引:1
作者
Ousbika, M. [1 ]
El Allali, Z. [1 ]
机构
[1] Mohamed First Univ, Oriental Appl Math Lab, Oujda, Morocco
关键词
BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s11253-021-01971-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of a continuous spectrum for an anisotropic discrete problem involving variable exponents. The proposed technical approach is based on the variational methods and critical-point theory.
引用
收藏
页码:977 / 987
页数:11
相关论文
共 22 条
[11]   Existence and multiplicity of positive solutions for discrete anisotropic equations [J].
Galewski, Marek ;
Wieteska, Renata .
TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (02) :297-310
[12]   On the system of anisotropic discrete BVPs [J].
Galewski, Marek ;
Wieteska, Renata .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) :1065-1081
[13]  
Galewski M, 2013, ELECTRON J DIFFER EQ
[14]   On the discrete boundary value problem for anisotropic equation [J].
Galewski, Marek ;
Glab, Szymon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) :956-965
[15]  
Kone B., 2010, J. Differ. Equ. Appl, V16, P1
[16]   Weak solutions for anisotropic discrete boundary value problems [J].
Kone, Blaise ;
Ouaro, Stanislas .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (10) :1537-1547
[17]   SPECTRAL ESTIMATES FOR A NONHOMOGENEOUS DIFFERENCE PROBLEM [J].
Kristaly, Alexandru ;
Mihailescu, Mihai ;
Radulescu, Vicentiu ;
Tersian, Stepan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :1015-1029
[18]   Eigenvalue problems for anisotropic discrete boundary value problems [J].
Mihailescu, Mihai ;
Radulescu, Vicentiu ;
Tersian, Stepan .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (06) :557-567
[19]   Existence results to a nonlinear p(k)-Laplacian difference equation [J].
Moghadam, Mohsen Khaleghi ;
Avci, Mustafa .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (10) :1652-1669
[20]   Triple solutions for a Dirichlet boundary value problem involving a perturbed discrete p(k)-Laplacian operator [J].
Moghadam, Mohsen Khaleghi ;
Henderson, Johnny .
OPEN MATHEMATICS, 2017, 15 :1075-1089