Periodic minimal surfaces of cubic symmetry

被引:3
作者
Lord, EA [1 ]
Mackay, AL
机构
[1] Indian Inst Sci, Dept Met, Bangalore 560012, Karnataka, India
[2] Univ London Birkbeck Coll, Dept Crystallog, London WC1E 7HX, England
来源
CURRENT SCIENCE | 2003年 / 85卷 / 03期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A survey of cubic minimal surfaces is presented, based on the concept of fundamental surface patches and their relation to the asymmetric units of the space groups. The software Surface Evolver has been used to test for stability and. to produce graphic displays. Particular emphasis is given to those surfaces that can be generated by a finite piece bounded by straight lines: Some new varieties have been found and a systematic nomenclature is introduced, which provides a symbol (a 'gene') for each triply-periodic minimal surface that specifies the surface unambiguously.
引用
收藏
页码:346 / 362
页数:17
相关论文
共 50 条
[41]   Continuous transitions of triply periodic minimal surfaces [J].
Tian, Lihao ;
Sun, Bingteng ;
Yan, Xin ;
Sharf, Andrei ;
Tu, Changhe ;
Lu, Lin .
ADDITIVE MANUFACTURING, 2024, 84
[42]   THE THEORY OF TRIPLY PERIODIC MINIMAL-SURFACES [J].
MEEKS, WH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :877-936
[43]   PERIODIC MINIMAL SURFACES IN RN - PRELIMINARY REPORT [J].
MEEKS, WH .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05) :A579-A580
[44]   Higher Genus Doubly Periodic Minimal Surfaces [J].
Connor, Peter .
EXPERIMENTAL MATHEMATICS, 2018, 27 (01) :47-61
[45]   CONSTRUCTIONS OF PERIODIC MINIMAL SURFACES AND MINIMAL ANNULI IN SOL3 [J].
Desmonts, Christophe .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (01) :143-166
[46]   Complete nonorientable minimal surfaces with the highest symmetry group [J].
Lopez, FJ ;
Martin, F .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (01) :55-81
[47]   MINIMAL-SURFACES IN R(3) WITH DIHEDRAL SYMMETRY [J].
ROSSMAN, W .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (01) :31-54
[48]   Reflections concerning triply-periodic minimal surfaces [J].
Schoen, Alan H. .
INTERFACE FOCUS, 2012, 2 (05) :658-668
[49]   NEW FAMILIES OF TRIPLY PERIODIC MINIMAL-SURFACES [J].
FOGDEN, A ;
HAEBERLEIN, M .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1994, 90 (02) :263-270
[50]   THE GLOBAL THEORY OF DOUBLY PERIODIC MINIMAL-SURFACES [J].
MEEKS, WH ;
ROSENBERG, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :351-379