A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications
被引:1
作者:
Cortes, Isaac E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Interinst Grad Program Stat, BR-05508090 Sao Paulo, BrazilUniv Sao Paulo, Interinst Grad Program Stat, BR-05508090 Sao Paulo, Brazil
Cortes, Isaac E.
[1
]
Venegas, Osvaldo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catolica Temuco, Fac Ingn, Dept Ciencias Matemat & Fis, Temuco 4780000, ChileUniv Sao Paulo, Interinst Grad Program Stat, BR-05508090 Sao Paulo, Brazil
Venegas, Osvaldo
[2
]
Gomez, Hector W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta 1240000, ChileUniv Sao Paulo, Interinst Grad Program Stat, BR-05508090 Sao Paulo, Brazil
Gomez, Hector W.
[3
]
机构:
[1] Univ Sao Paulo, Interinst Grad Program Stat, BR-05508090 Sao Paulo, Brazil
bimodal distribution;
logistic distribution;
maximum likelihood;
symmetry;
asymmetric;
SKEW;
INFERENCE;
D O I:
10.3390/math10121968
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we introduce bimodal extensions, one symmetric and one asymmetric, of the logistic distribution. We define this new density and study some basic properties. We draw inferences from the moment estimator and maximum likelihood approaches. We present a simulation study to assess the behaviour of the moment and maximum likelihood estimators. We also study the singularity of the Fisher information matrix for particular cases. We offer applications in real data and compare them with a mixture of logistics distributions.