Computation of the eigenvalues of the schrodinger equation by exponentially-fitted Runge-Kutta-nystrom methods

被引:0
作者
Monovasilis, Th. [1 ]
Kalogiratou, Z. [2 ]
Simos, T. E. [3 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, POB 30, Kastoria 52100, Greece
[2] Technol Educat Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, Kastoria GR-52100, Greece
[3] Univ Pelponnessos, Fac Sci & Technol, Dept Comp Sci & Technol, Peloponnessos, Greece
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS | 2007年 / 936卷
关键词
Runge Kutta Nystrom methods; schrodinger equation; trigonometrically fitted;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider exponentially fitted Runge Kutta Nystrom methods. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions exp(wx), exp(-wx), or sin(wx),cos(wx), w epsilon R. We modify existing RKN methods order four to six and apply these methods to the computation of the eigenvalues of the Schrodinger Equation.
引用
收藏
页码:372 / +
页数:2
相关论文
共 8 条
[1]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[2]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[3]  
Hairer E., 2002, SOLVING ORDINARY DIF
[4]  
Ixaru L.G., 2004, EXPONENTIAL FITTING
[5]   Exponentially-fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions [J].
Simos, TE .
APPLIED MATHEMATICS LETTERS, 2002, 15 (02) :217-225
[6]   An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions [J].
Simos, TE .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) :1-8
[7]   Embedded exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of orbital problems [J].
Van de Vyver, Hans .
NEW ASTRONOMY, 2006, 11 (08) :577-587
[8]  
van der Meulen J, 1999, Am J Ther, V6, P123, DOI 10.1097/00045391-199905000-00002