Existence and Localization Results for p(x)-Laplacian via Topological Methods

被引:22
作者
Cekic, B. [1 ]
Mashiyev, R. A. [1 ]
机构
[1] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkey
关键词
Weak Solution; Sobolev Space; Localization Principle; Dirichlet Problem; Laplacian Operator;
D O I
10.1155/2010/120646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of a week solution in W(0)(1,p(x)) (Omega) to a Dirichlet problem for -Delta(p(x))u = f(x, u) in Omega, and its localization. This approach is based on the nonlinear alternative of Leray-Schauder.
引用
收藏
页数:7
相关论文
共 7 条
[1]  
[Anonymous], 1982, MONOGR MAT
[2]  
Dinca G., 2001, Portugaliae Mathematica. Nova Serie, V58, P339
[3]   A fixed point method for the p(.)-Laplacian [J].
Dinca, George .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (13-14) :757-762
[4]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[5]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[6]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[7]  
ORegan D., 2001, Series in Mathematical Analysis and Applications, V3