Site 2 of the Yersinia pestis substrate-binding protein YfeA is a dynamic surface metal-binding site

被引:3
|
作者
Radka, Christopher D. [1 ]
Aller, Stephen G. [2 ]
机构
[1] St Jude Childrens Res Hosp, Dept Infect Dis, Memphis, TN 38105 USA
[2] Univ Alabama Birmingham, Dept Pharmacol & Toxicol, Birmingham, AL 35294 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院; 加拿大创新基金会; 加拿大健康研究院;
关键词
Yersinia pestis; YfeA site 2; substrate-binding proteins; inter-protein metal coordination; crystallography; zinc; manganese; transition-metal homeostasis; plague; ZINC TRANSPORTER; ZNUA; COORDINATION; VIRULENCE; MANGANESE; FEATURES; PLAGUE; SYSTEM; IRON;
D O I
10.1107/S2053230X21008086
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The substrate-binding protein YfeA (also known as YPO2439 or y1897) is a polyspecific metal-binding protein that is crucial for nutrient acquisition and virulence in Yersinia pestis, the causative microbe of plague. YfeA folds into a monomeric c-clamp like other substrate-binding proteins and has two metal-binding sites (sites 1 and 2). Site 2 is a bidentate surface site capable of binding Zn and Mn atoms and is a unique feature of YfeA. Occasionally, the site 2 residues of two YfeA molecules will cooperate with the histidine tag of a third YfeA molecule in coordinating the same metal and lead to metal-dependent crystallographic packing. Here, three crystal structures of YfeA are presented at 1.85, 2.05 and 2.25 angstrom resolution. A comparison of the structures reveals that the metal can be displaced at five different locations ranging from similar to 4 to similar to 16 angstrom away from the canonical site 2. These observations reveal different configurations of site 2 that enable cooperative metal binding and demonstrate how site 2 is dynamic and freely available for inter-protein metal coordination.
引用
收藏
页码:286 / 293
页数:8
相关论文
共 50 条
  • [21] Crystal Structures of Archaemetzincin Reveal a Moldable Substrate-Binding Site
    Graef, Christine
    Schacherl, Magdalena
    Waltersperger, Sandro
    Baumann, Ulrich
    PLOS ONE, 2012, 7 (08):
  • [22] Transmembrane reorientation of the substrate-binding site in vesicular acetylcholine transporter
    Bravo, DT
    Kolmakova, NG
    Parsons, SM
    BIOCHEMISTRY, 2004, 43 (27) : 8787 - 8793
  • [23] STUDY OF SUBSTRATE-BINDING SITE IN HOG KIDNEY DIAMINE OXIDASE
    BARDSLEY, WG
    HILL, CM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1970, 41 (04) : 1068 - &
  • [24] Exploring the roles of substrate-binding surface of the chaperone site in the chaperone activity of trigger factor
    Fan, Dongjie
    Cao, Shunan
    Zhou, Qiming
    Zhang, You
    Yue, Lei
    Han, Chang
    Yang, Bo
    Wang, Yu
    Ma, Zhuo
    Zhu, Lingxiang
    Liu, Chuanpeng
    FASEB JOURNAL, 2018, 32 (12): : 6655 - 6665
  • [25] The lid subdomain of DnaK is required for the stabilization of the substrate-binding site
    Moro, F
    Fernández-Sáiz, V
    Muga, A
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) : 19600 - 19606
  • [26] Modeling of substrate-binding region of the active site of monoamine oxidase A
    Veselovsky, AV
    Medvedev, AE
    Tikhonova, OV
    Skvortsov, VS
    Ivanov, AS
    BIOCHEMISTRY-MOSCOW, 2000, 65 (08) : 910 - 916
  • [27] HEPATIC ALDEHYDE OXIDASE .3. SUBSTRATE-BINDING SITE
    RAJAGOPALAN, KV
    HANDLER, P
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1964, 239 (06) : 2027 - &
  • [28] CHARACTERIZATION OF AN INHIBITORY METAL-BINDING SITE IN CARBOXYPEPTIDASE-A
    LARSEN, KS
    AULD, DS
    BIOCHEMISTRY, 1991, 30 (10) : 2613 - 2618
  • [29] Affinity cleavage at the metal-binding site of phosphoenolpyruvate carboxykinase
    Hlavaty, JJ
    Nowak, T
    BIOCHEMISTRY, 1997, 36 (49) : 15514 - 15524
  • [30] Site selection in tandem arrays of metal-binding domains
    Thickman, KR
    Davis, A
    Berg, JM
    INORGANIC CHEMISTRY, 2004, 43 (25) : 7897 - 7901