Bandgap Engineering in OH-Functionalized Silicon Nanocrystals: Interplay between Surface Functionalization and Quantum Confinement

被引:18
作者
Burkle, Marius [1 ]
Lozac'h, Mickael [1 ]
McDonald, Calum [2 ]
Mariotti, Davide [2 ]
Matsubara, Koji [1 ]
Svrcek, Vladimir [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Cent 2, Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
[2] Univ Ulster, Nanotechnol & Integrated Bioengn Ctr NIBEC, Newtownabbey BT37 0QB, North Ireland
基金
日本学术振兴会; 英国工程与自然科学研究理事会;
关键词
bandgap engineering; DFT calculations; photoluminescence measurements; silicon nanocrystals; solar cells; SI NANOCRYSTALS; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES; BASIS-SET; PHOTOLUMINESCENCE; NANOPARTICLES; EMISSION; EXCHANGE; STATES; YIELDS;
D O I
10.1002/adfm.201701898
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, a systematic first-principles study of the quasi-band structure of silicon nanocrystals (Si-NCs) is provided, focusing on bandgap engineering by combining quantum confinement of the electronic states with OH surface-functionalization. A mapping between the bandgap, Si-NC diameter, and the degree of hydroxide coverage is provided, which can be used as a guideline for bandgap engineering. Complementary to first-principles calculations, the photoluminescence (PL) wavelength of Si-NCs in the quantum-confinement regime is measured with well-defined diameters between 1 and 4 nm. The Si-NCs are prepared by means of a microplasma technique, which allows a surfactant-free engineering of the Si-NCs surface with OH groups. The microplasma treatment technique allows us to gradually change the degree of OH coverage, enabling us, in turn, to gradually shift the emitted light in the PL spectra by up to 100 nm to longer wavelengths. The first-principles calculations are consistent with the experimentally observed dependence of the wavelengths on the OH coverage and show that the PL redshift is determined by the charge transfer between the Si-NC and the functional groups, while on the other hand surface strain plays only a minor part.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Toward reliable density functional methods without adjustable parameters: The PBE0 model
    Adamo, C
    Barone, V
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) : 6158 - 6170
  • [2] Adsorption dynamics and electrochemical and photophysical properties of thiolated ruthenium 2,2′-bipyridine monolayers
    Bertoncello, Paolo
    Kefalas, Evangelos T.
    Pikramenou, Zoe
    Unwin, Patrick R.
    Forster, Robert J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (20) : 10063 - 10069
  • [3] High Quantum Yield Dual Emission from Gas-Phase Grown Crystalline Si Nanoparticles
    Botas, A. M. P.
    Ferreira, R. A. S.
    Pereira, R. N.
    Anthony, R. J.
    Moura, T.
    Rowe, D. J.
    Kortshagen, U.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (19) : 10375 - 10383
  • [4] Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements
    Check, CE
    Faust, TO
    Bailey, JM
    Wright, BJ
    Gilbert, TM
    Sunderlin, LS
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (34) : 8111 - 8116
  • [5] Silicon Quantum Dots for Biological Applications
    Chinnathambi, Shanmugavel
    Chen, Song
    Ganesan, Singaravelu
    Hanagata, Nobutaka
    [J]. ADVANCED HEALTHCARE MATERIALS, 2014, 3 (01) : 10 - 29
  • [6] Influence of Halides on the Optical Properties of Silicon Quantum Dots
    Dasog, Mita
    Bader, Kathrin
    Veinot, Jonathan G. C.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (04) : 1153 - 1156
  • [7] Excitonic and quasiparticle gaps in Si nanocrystals
    Delerue, C
    Lannoo, M
    Allan, G
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2457 - 2460
  • [8] Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission
    Dohnalova, Katerina
    Poddubny, Alexander N.
    Prokofiev, Alexei A.
    de Boer, Wieteke D. A. M.
    Umesh, Chinnaswamy P.
    Paulusse, Jos M. J.
    Zuilhof, Han
    Gregorkiewicz, Tom
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2013, 2 : e47 - e47
  • [9] Dunning T.H., 1977, METHODS ELECT STRUCT, V3
  • [10] Feller D, 1996, J COMPUT CHEM, V17, P1571, DOI 10.1002/jcc.9