Positive evanescent solutions of singular elliptic problems in exterior domains

被引:3
作者
Orpel, Aleksandra [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, S Banacha 22, PL-90238 Lodz, Poland
关键词
singular elliptic problems; positive evanescent solutions; subsolution and supersolution method; exterior domain; BOUNDARY-VALUE-PROBLEMS; QUASI-LINEAR EQUATIONS; DIFFERENTIAL-EQUATIONS; EXISTENCE; NONEXISTENCE;
D O I
10.14232/ejqtde.2016.1.36
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of positive solutions for the following class of nonlinear elliptic problems div (a(parallel to x parallel to)del u (x)) + f (x, u (x)) - (u (x))(-alpha)parallel to del u (x)parallel to(beta) + g (parallel to x parallel to)x . del u (x) = 0, where X I R-n and parallel to x parallel to > R, with the condition lim(x) = 0. We present the approach based on the subsolution and supersolution method for bounded subdomains and a certain convergence procedure. Our results cover both sublinear and superlinear cases of f. The speed of decaying of solutions will be also characterized more precisely.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 20 条
[1]   EXISTENCE AND MULTIPLICITY THEOREMS FOR SEMI-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1976, 150 (03) :281-295
[2]   Existence and nonexistence of solutions for singular quadratic quasilinear equations [J].
Arcoya, David ;
Carmona, Jose ;
Leonori, Tommaso ;
Martinez-Aparicio, Pedro J. ;
Orsina, Luigi ;
Petitta, Francesco .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :4006-4042
[3]   Singular quasilinear equations with quadratic growth in the gradient without sign condition [J].
Arcoya, David ;
Barile, Sara ;
Martinez-Aparicio, Pedro J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :401-408
[4]   Existence of positive solutions of quasilinear elliptic equations [J].
Constantin, A .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (01) :147-154
[5]   Positive solutions of quasilinear elliptic equations [J].
Constantin, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (01) :334-339
[6]   On the existence of positive solutions of second order differential equations [J].
Constantin, Adrian .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (02) :131-138
[7]  
Covei D.-P., 2011, Surv. Math. Appl., V6, P127
[8]   A Lane-Emden-Fowler type problem with singular nonlinearity [J].
Covei, Dragos-Patru .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (02) :325-338
[9]   Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems [J].
Cui, SB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) :149-176
[10]   Positive evanescent solutions of nonlinear elliptic equations [J].
Djebali, Smail ;
Moussaoui, Toufik ;
Mustafa, Octavian G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :863-870