Non-Markovianity degree for random unitary evolution

被引:79
作者
Chruscinski, Dariusz [1 ]
Wudarski, Filip A.
机构
[1] Fac Phys Astron & Informat, Inst Phys, PL-87100 Torun, Poland
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 01期
关键词
D O I
10.1103/PhysRevA.91.012104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the non-Markovianity degree for random unitary evolution of d-level quantum systems. It is shown how the non-Markovianity degree is characterized in terms of local decoherence rates. In particular we derive a sufficient condition for vanishing of the backflow of information and relate this concept to other characteristics of non-Markovianity.
引用
收藏
页数:5
相关论文
共 40 条
[21]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[22]   Quantum regression theorem and non-Markovianity of quantum dynamics [J].
Guarnieri, Giacomo ;
Smirne, Andrea ;
Vacchini, Bassano .
PHYSICAL REVIEW A, 2014, 90 (02)
[23]   Canonical form of master equations and characterization of non-Markovianity [J].
Hall, Michael J. W. ;
Cresser, James D. ;
Li, Li ;
Andersson, Erika .
PHYSICAL REVIEW A, 2014, 89 (04)
[24]   Alternative non-Markovianity measure by divisibility of dynamical maps [J].
Hou, S. C. ;
Yi, X. X. ;
Yu, S. X. ;
Oh, C. H. .
PHYSICAL REVIEW A, 2011, 83 (06)
[25]   Comparing quantum Markovianities: Distinguishability versus correlations [J].
Jiang, Min ;
Luo, Shunlong .
PHYSICAL REVIEW A, 2013, 88 (03)
[26]   ON BIRKHOFF THEOREM FOR DOUBLY STOCHASTIC COMPLETELY POSITIVE MAPS OF MATRIX ALGEBRAS [J].
LANDAU, LJ ;
STREATER, RF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 193 :107-127
[27]   GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS [J].
LINDBLAD, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (02) :119-130
[28]   DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS [J].
Lo Franco, Rosario ;
Bellomo, Bruno ;
Maniscalco, Sabrina ;
Compagno, Giuseppe .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (1-3)
[29]   Geometrical characterization of non-Markovianity [J].
Lorenzo, Salvatore ;
Plastina, Francesco ;
Paternostro, Mauro .
PHYSICAL REVIEW A, 2013, 88 (02)
[30]   Quantum Fisher information flow and non-Markovian processes of open systems [J].
Lu, Xiao-Ming ;
Wang, Xiaoguang ;
Sun, C. P. .
PHYSICAL REVIEW A, 2010, 82 (04)