Human-in-the-loop Bayesian optimization of wearable device parameters

被引:73
作者
Kim, Myunghee [1 ,2 ]
Ding, Ye [1 ,2 ]
Malcolm, Philippe [1 ,2 ,3 ,4 ]
Speeckaert, Jozefien [1 ,2 ]
Siviy, Christoper J. [1 ,2 ]
Walsh, Conor J. [1 ,2 ]
Kuindersma, Scott [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Univ Nebraska, Dept Biomech, Omaha, NE 68182 USA
[4] Univ Nebraska, Ctr Res Human Movement Variabil, Omaha, NE 68182 USA
基金
美国国家科学基金会;
关键词
CMA EVOLUTION STRATEGY; PUSH-OFF WORK; EXOSKELETON ASSISTANCE; GLOBAL OPTIMIZATION; METABOLIC-RATE; WALKING; PROSTHESIS; REGRESSION; COST; SLOW;
D O I
10.1371/journal.pone.0184054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signalto- noise ratio. We evaluate the use of Bayesian optimization-a family of sample-efficient, noise-tolerant, and global optimization methods-for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (+/- 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01).
引用
收藏
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2008, THESIS
[2]  
[Anonymous], INSTANTANEUOS COST M
[3]  
[Anonymous], 2010, A tutorial on Bayesian optimization of expensive cost functions
[4]  
[Anonymous], 1975, OPTIMIZATION TECHNIQ
[5]  
[Anonymous], ROBOTICS SCI SYSTEMS
[6]  
[Anonymous], 2015, thesis
[7]  
Asbeck AT, 2015, IEEE INT CONF ROBOT, P6197, DOI 10.1109/ICRA.2015.7140069
[8]   Algorithms that Satisfy a Stopping Criterion, Probably [J].
Ascher U. ;
Roosta-Khorasani F. .
Vietnam Journal of Mathematics, 2016, 44 (1) :49-69
[9]  
Bae J, 2015, INT C REHAB ROBOT, P131, DOI 10.1109/ICORR.2015.7281188
[10]   EFFICIENT TESTS FOR NORMALITY, HOMOSCEDASTICITY AND SERIAL INDEPENDENCE REGRESSION RESIDUALS - MONTE-CARLO EVIDENCE [J].
BERA, AK ;
JARQUE, CM .
ECONOMICS LETTERS, 1981, 7 (04) :313-318