The inviscid limit and well-posedness for the Euler-Nernst-Planck-Poisson system

被引:2
作者
Zhang, Zeng [1 ,2 ]
Yin, Zhaoyang [2 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan, Hubei, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
The Euler-Nernst- Planck-Poisson system; the Navier-Stokes-Nernst-Planck-Poisson system; local well-posedness; blow-up; the inviscid limit; TIME BEHAVIOR;
D O I
10.1080/00036811.2018.1489959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly study the Cauchy problem of the Euler-Nernst-Planck-Poisson (ENPP) system. We first establish local well-posedness for the Cauchy problem of the ENPP system in Besov spaces. Then we present a blow-up criterion of solutions to the ENPP system. Moreover, we prove that the solutions of the Navier-Stokes-Nernst-Planck-Poisson system converge to the solutions of the ENPP system as the viscosity nu goes to zero, and the convergence rate is at least of order v(1/2).
引用
收藏
页码:181 / 213
页数:33
相关论文
共 20 条
[1]  
[Anonymous], 2011, FOURIER ANAL NONLINE
[2]  
[Anonymous], 2004, MILAN J MATH
[3]  
[Anonymous], ARXIV09104973
[4]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[5]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[6]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[7]   Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices [J].
Deng, Chao ;
Zhao, Jihong ;
Cui, Shangbin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :392-405
[8]   Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces [J].
Deng, Chao ;
Zhao, Jihong ;
Cui, Shangbin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :2088-2100
[9]   Analytical approaches to charge transport in a moving medium [J].
Jerome, JW .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2002, 31 (4-6) :333-366
[10]  
LEMARIE-RIEUSSET P. G., 2002, CRC Research Notes in Mathematics, V431