Reduction and unfolding: The Kepler problem

被引:10
作者
D'Avanzo, A
Marmo, G
机构
[1] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sezione Napoli, I-80126 Naples, Italy
关键词
reduction; Kepler problem; Lagrangian formalism;
D O I
10.1142/S0219887805000466
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we show, in a systematic way, how to relate the Kepler problem to the isotropic harmonic oscillator. Unlike previous approaches, our constructions are carried over in the Lagrangian formalism dealing, with second order vector fields. We therefore provide a tangent bundle version of the Kustaanheimo-Stiefel map.
引用
收藏
页码:83 / 109
页数:27
相关论文
共 31 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]  
[Anonymous], J MATH PHYS
[3]  
[Anonymous], 1974, S MATH
[5]   THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS [J].
CARINENA, JF ;
IBORT, LA ;
MARMO, G ;
STERN, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 263 (03) :153-212
[6]  
CARINENA JF, UNPUB GEOMETRY DYNAM
[7]   CONFORMAL REGULARIZATION OF THE KEPLER-PROBLEM [J].
CORDANI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :403-413
[8]   SPINOR REGULARIZATION OF THE N-DIMENSIONAL KEPLER-PROBLEM [J].
CORDANI, B ;
REINA, C .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (01) :79-82
[9]  
DEFILIPPO S, 1989, ANN I H POINCARE-PHY, V50, P205
[10]  
Godbillon C., 1969, GEOMETRIE DIFFERENTI