Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows

被引:346
作者
Mayer, Mirjam [1 ,2 ]
Depken, Martin [1 ,2 ]
Bois, Justin S. [1 ,2 ]
Juelicher, Frank [2 ]
Grill, Stephan W. [1 ,2 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
C-ELEGANS EMBRYOS; CAENORHABDITIS-ELEGANS; EARLY EMBRYOGENESIS; PROTEINS RGA-3; CELL-DIVISION; PAR PROTEINS; GERM-LINE; CYTOKINESIS; MICROFILAMENTS; MORPHOGENESIS;
D O I
10.1038/nature09376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asymmetric cell divisions are essential for the development of multicellular organisms. To proceed, they require an initially symmetric cell to polarize(1). In Caenorhabditis elegans zygotes, anteroposterior polarization is facilitated by a large-scale flow of the actomyosin cortex(2-4), which directs the asymmetry of the first mitotic division. Cortical flows appear in many contexts of development(5), but their underlying forces and physical principles remain poorly understood. How actomyosin contractility and cortical tension interact to generate large-scale flow is unclear. Here we report on the subcellular distribution of cortical tension in the polarizing C. elegans zygote, which we determined using position- and direction-sensitive laser ablation. We demonstrate that cortical flow is associated with anisotropies in cortical tension and is not driven by gradients in cortical tension, which contradicts previous proposals(5). These experiments, in conjunction with a theoretical description of active cortical mechanics, identify two prerequisites for large-scale cortical flow: a gradient in actomyosin contractility to drive flow and a sufficiently large viscosity of the cortex to allow flow to be long-ranged. We thus reveal the physical requirements of large-scale intracellular cortical flow that ensure the efficient polarization of the C. elegans zygote.
引用
收藏
页码:617 / U150
页数:7
相关论文
共 47 条
[1]   CORTICAL FLOW IN ANIMAL-CELLS [J].
BRAY, D ;
WHITE, JG .
SCIENCE, 1988, 239 (4842) :883-888
[2]  
BRENNER S, 1974, GENETICS, V77, P71
[3]   C-elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes [J].
Cheeks, RJ ;
Canman, JC ;
Gabriel, WN ;
Meyer, N ;
Strome, S ;
Goldstein, B .
CURRENT BIOLOGY, 2004, 14 (10) :851-862
[4]   Centrosomes direct cell polarity independently of microtubule assembly in C-elegans embryos [J].
Cowan, CR ;
Hyman, AA .
NATURE, 2004, 431 (7004) :92-96
[5]   Myosin I contributes to the generation of resting cortical tension [J].
Dai, JW ;
Ting-Beall, HP ;
Hochmuth, RM ;
Sheetz, MP ;
Titus, MA .
BIOPHYSICAL JOURNAL, 1999, 77 (02) :1168-1176
[6]   Probing single-cell micromechanics in vivo:: The microrheology of C-elegans developing embryos [J].
Daniels, Brian R. ;
Masi, Byron C. ;
Wirtz, Denis .
BIOPHYSICAL JOURNAL, 2006, 90 (12) :4712-4719
[7]   Stress-dependent elasticity of composite actin networks as a model for cell behavior [J].
Gardel, ML ;
Nakamura, F ;
Hartwig, J ;
Crocker, JC ;
Stossel, TP ;
Weitz, DA .
PHYSICAL REVIEW LETTERS, 2006, 96 (08)
[8]   Elastic Behavior of cross-linked and bundled actin networks [J].
Gardel, ML ;
Shin, JH ;
MacKintosh, FC ;
Mahadevan, L ;
Matsudaira, P ;
Weitz, DA .
SCIENCE, 2004, 304 (5675) :1301-1305
[9]   The molecular requirements for cytokinesis [J].
Glotzer, M .
SCIENCE, 2005, 307 (5716) :1735-1739
[10]  
Goldstein B, 1996, DEVELOPMENT, V122, P1467