Cyclodextrin/Graphene-Based Porous Carbon Nanofibers with Embedded MnO2 Nanoparticles for Supercapacitor Applications

被引:17
作者
Yun, Seok In [1 ]
Song, Jong-Won [1 ]
Kim, Bo-Hye [1 ]
机构
[1] Daegu Univ, Dept Chem Educ, Gyongsan 712714, Gyeongsangbuk D, South Korea
基金
新加坡国家研究基金会;
关键词
cyclodextrin; MnO2; graphene; electrospinning; DFT; electrochemical performance; ORDERED MESOPOROUS CARBONS; HIGH-TEMPERATURE STABILITY; INCLUSION COMPLEX; OXIDE; ENERGY; COMPOSITE; HYBRIDS; NANOCOMPOSITES; CAPACITANCE; NANOSHEETS;
D O I
10.1021/acsanm.2c00645
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three kinds of free-standing cyclodextrin (CD)/graphene-based porous carbon nanofiber (CNF) composites with MnO(2 )prepared using alpha-, beta-, and gamma-CD are investigated for their morphological and electrochemical properties to compare their electrochemical applicability in aqueous electrolytes. The stability of the optimized structure of gamma-CD/graphene-based porous CNF with MnO2 (PMnG(gamma)) is confirmed by density functional theory calculations. Results show that when graphene is added, MnCl2 forms an inclusion complex with gamma-CD well, and then MnO2 particles are embedded in the CNF matrix under the influence of these inclusion complexes after heat treatment. The PMnG(gamma) composites, in which the electrochemically active material of MnO2 particles is embedded in the fiber, maximize the synergistic effect of the pseudocapacity of MnO2 and the electric double-layer capacity induced by the highly porous surface. Hence, the PMnG(gamma) electrodes exhibit high specific capacitance (235 Fg(-1) at a constant current density of 1 mA cm(-2)), energy density (25.5-12.2 Wh kg(-1) at power densities ranging from 400 to 10,000 W kg(-1)), and high long-term stability of more than 96% after 10,000 cycles in aqueous solution.
引用
收藏
页码:5688 / 5698
页数:11
相关论文
共 44 条
[1]   Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater [J].
Badruddoza, Abu Zayed M. ;
Shawon, Zayed Bin Zakir ;
Daniel, Tay Wei Jin ;
Hidajat, Kus ;
Uddin, Mohammad Shahab .
CARBOHYDRATE POLYMERS, 2013, 91 (01) :322-332
[2]   Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide [J].
Barranco, V. ;
Pico, F. ;
Ibanez, J. ;
Lillo-Rodenas, M. A. ;
Linares-Solano, A. ;
Kimura, M. ;
Oya, A. ;
Rojas, R. M. ;
Amarilla, J. M. ;
Rojo, J. M. .
ELECTROCHIMICA ACTA, 2009, 54 (28) :7452-7457
[3]   The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553-566, 1970) [J].
Boys, SF ;
Bernardi, F .
MOLECULAR PHYSICS, 2002, 100 (01) :65-73
[4]   Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes [J].
Cakici, Murat ;
Reddy, Kakarla Raghava ;
Alonso-Marroquin, Fernando .
CHEMICAL ENGINEERING JOURNAL, 2017, 309 :151-158
[5]  
FREUDENBERG K, 1948, Z NATURFORSCH B, V3, P464
[6]   Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas [J].
Gao, Wenjun ;
Wan, Ying ;
Dou, Yuqian ;
Zhao, Dongyuan .
ADVANCED ENERGY MATERIALS, 2011, 1 (01) :115-123
[7]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[8]   Structure-tunable Mn3O4-Fe3O4@C hybrids for high-performance supercapacitor [J].
Hu, Bin ;
Wang, Yanbo ;
Shang, Xiaohong ;
Xu, Kaibing ;
Yang, Jianmao ;
Huang, Manhong ;
Liu, Jianyun .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 :66-75
[9]   How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors [J].
Hu, CC ;
Chen, WC ;
Chang, KH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A281-A290
[10]   Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials [J].
Jeong, Hyeon Taek .
CARBON LETTERS, 2020, 30 (01) :55-61