Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

被引:258
作者
Coles, R. J. [1 ]
Price, D. M. [1 ]
Dixon, J. E. [1 ]
Royall, B. [1 ]
Clarke, E. [2 ]
Kok, P. [1 ]
Skolnick, M. S. [1 ]
Fox, A. M. [1 ]
Makhonin, M. N. [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Sheffield, Dept Elect & Elect Engn, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
EMISSION; LIGHT;
D O I
10.1038/ncomms11183
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95 +/- 5% and have potential to serve as the basis of spin-logic and network implementations.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[2]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[3]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[4]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[5]  
2-E
[6]   Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography [J].
Dousse, A. ;
Lanco, L. ;
Suffczynski, J. ;
Semenova, E. ;
Miard, A. ;
Lemaitre, A. ;
Sagnes, I. ;
Roblin, C. ;
Bloch, J. ;
Senellart, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[7]   Dipole induced transparency in waveguide coupled photonic crystal cavities [J].
Faraon, Andrei ;
Fushman, Ilya ;
Englund, Dirk ;
Stoltz, Nick ;
Petroff, Pierre ;
Vuckovic, Jelena .
OPTICS EXPRESS, 2008, 16 (16) :12154-12162
[8]   Fine structure splitting in the optical spectra of single GaAs quantum dots [J].
Gammon, D ;
Snow, ES ;
Shanabrook, BV ;
Katzer, DS ;
Park, D .
PHYSICAL REVIEW LETTERS, 1996, 76 (16) :3005-3008
[9]   A high stability beam-scanning confocal optical microscope for low temperature operation [J].
Grazioso, Fabio ;
Patton, Brian R. ;
Smith, Jason M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (09)
[10]   Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J].
Johnson, SG ;
Joannopoulos, JD .
OPTICS EXPRESS, 2001, 8 (03) :173-190