Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy

被引:31
|
作者
Zhang, Wei [1 ]
Ma, Zhichao [1 ]
Zhao, Hongwei [1 ,2 ]
Ren, Luquan [3 ,4 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130025, Peoples R China
[2] Jilin Univ, Key Lab CNC Equipment Reliabil Minist Educ, Changchun 130025, Peoples R China
[3] Jilin Univ, Key Lab Engn Minist Educ B, Changchun 130025, Peoples R China
[4] Jilin Univ, Weihai Inst B, Weihai 264400, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 847卷
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Strength-ductility trade-off; Cold-rolled and annealed; Spinodal decomposition; MECHANICAL-PROPERTIES; STABILITY; BEHAVIOR; DEPENDENCE;
D O I
10.1016/j.msea.2022.143343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The strength-ductility trade-off of high-entropy alloy (HEA) is a major factor affecting its potential application. In this work, the mechanical properties and deformation mechanisms of as-cast and cold rolled-annealed (RA) Fe23Co24Ni24Cr21Al8 (at%) HEA samples were comparatively investigated. Compared with as-cast sample, the cold-rolled and annealed sample possessed higher yield strength (725 +/- 12 MPa), ultimate strength (1042 +/- 23 MPa) and sustained good ductility (46.7 +/- 4.5%), suggesting excellent strength-ductility combination was achieved in RA sample. The as-cast and RA samples both possessed dual phases including FCC and BCC, but the volume fraction of BCC in as-cast sample was very few. The RA sample exhibited significantly decreased grain size and more volume fraction of BCC compared with as-cast sample, indicative of the refinement strengthening and second phase strengthening. Meanwhile, a high density of dislocation walls and spinodal decomposition structure were observed in RA sample, which contributed to the outstanding ductility.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Microstructure Evolution and Strength-ductility Behavior of FeCoNiTi High-entropy Alloy
    Liu Y.
    Xu K.
    Tu J.
    Huang C.
    Wu W.
    Tan L.
    Zhang Y.
    Yin R.
    Zhou Z.
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2020, 34 (07): : 535 - 544
  • [22] Nitrogen induced heterogeneous structures overcome strength -ductility trade-off in an additively manufactured high-entropy alloy
    Song, Min
    Zhou, Rui
    Gu, Ji
    Wang, Zhangwei
    Ni, Song
    Liu, Yong
    APPLIED MATERIALS TODAY, 2020, 18
  • [23] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114
  • [24] Breakthrough the strength-ductility trade-off in AA7075 alloy by gradient microstructure
    Ghorbani, Hamid
    Jamaati, Roohollah
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2023, 23 (04)
  • [25] Co-existence of nanoprecipitates with solute nitrogen evades the strength-ductility trade-off in metastable high entropy alloy
    Geng, Zhaowen
    Shu, Zhongliang
    Chen, Chao
    Luo, Jinru
    Song, Miao
    Li, Ruidi
    Zhou, Kechao
    MATERIALS RESEARCH LETTERS, 2024, 12 (06): : 433 - 441
  • [26] Micromechanical origin for the wide range of strength-ductility trade-off in metastable high entropy alloys
    Lyu, Zongyang
    Li, Zehao
    Sasaki, Taisuke
    Gao, Yanfei
    An, Ke
    Chen, Yan
    Yu, Dunji
    Hono, Kazuhiro
    Liaw, Peter K.
    SCRIPTA MATERIALIA, 2023, 231
  • [27] Bioinspired strategy to break strength-plasticity trade-off in high-entropy alloy
    Wang, Weiqi
    Qu, Lidan
    Lu, Yunzhuo
    MATERIALS RESEARCH LETTERS, 2024, 12 (11): : 806 - 814
  • [28] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [29] Overcoming strength-ductility trade-off in Si-containing transformation-induced plasticity high-entropy alloys via metastability engineering
    Sohrabi, Mohammad Javad
    Mehranpour, Mohammad Sajad
    Lee, Jae Heung
    Heydarinia, Ali
    Mirzadeh, Hamed
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 908
  • [30] Regulation of chemical microenvironment to overcome strength-ductility trade-off in FeCrVTiSi x high-entropy alloys coating
    Lin, Shouyuan
    Yao, Yuan
    Yao, Zhongping
    Shi, Guanghui
    Liu, Yanyan
    Zhang, Peng
    Lu, Songtao
    Qin, Wei
    Wu, Xiaohong
    SURFACE & COATINGS TECHNOLOGY, 2024, 484