An extension theorem and the C1 splitting lemma in Hilbert space

被引:0
|
作者
Bromberg, S
de Medrano, SL
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04511, DF, Mexico
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 06期
关键词
D O I
10.1016/S0764-4442(01)01877-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an extension theorem of Whitney type for a 1-jet on a Banach space Y of a certain kind to a C-1 function on X x Y, where X is a Hilbert space. With this result, we prove a C-1 parameterized Morse lemma (which establishes the necessary and sufficient conditions for a C-1 equivalence to the standard form) and a C-1 splitting lemma in Hilbert space, for a C-2 singular germ. This improves the known version that only guarantees, under the same hypothesis, a C-0 equivalence. (C) Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:533 / 536
页数:4
相关论文
共 50 条
  • [41] Prescribing Tangent Hyperplanes to C1,1 and C1,ω Convex Hypersurfaces in Hilbert and Superreflexive Banach Spaces
    Azagra, Daniel
    Mudarra, Carlos
    JOURNAL OF CONVEX ANALYSIS, 2020, 27 (01) : 79 - 102
  • [42] Photochemical water splitting mediated by a C1 shuttle
    Alderman N.P.
    Sommers J.M.
    Viasus C.J.
    Wang C.H.T.
    Peneau V.
    Gambarotta S.
    Vidjayacoumar B.
    Al-Bahily K.A.
    Gambarotta, S. (sgambaro@uottawa.ca), 1600, Royal Society of Chemistry (46): : 49 - 54
  • [43] Photochemical water splitting mediated by a C1 shuttle
    Alderman, N. P.
    Sommers, J. M.
    Viasus, C. J.
    Wang, C. H. T.
    Peneau, V.
    Gambarotta, S.
    Vidjayacoumar, B.
    Al-Bahily, K. A.
    DALTON TRANSACTIONS, 2017, 46 (01) : 49 - 54
  • [44] The Penrose singularity theorem in regularity C1,1
    Kunzinger, Michael
    Steinbauer, Roland
    Vickers, James A.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (15)
  • [45] SCHWARZ LEMMA AND HADAMARD 3-SPHERES THEOREM IN HILBERT SPACES
    CHEN, SS
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (03): : 218 - &
  • [46] A C1 ARNOL'D-LIOUVILLE THEOREM
    Arnaud, Marie-Claude
    Xue, Jinxin
    ASTERISQUE, 2020, (416) : 1 - 31
  • [47] C1 Hartman Theorem for random dynamical systems
    Lu, Kening
    Zhang, Weinian
    Zhang, Wenmeng
    ADVANCES IN MATHEMATICS, 2020, 375
  • [48] A STABILITY THEOREM FOR FRAMES IN HILBERT SPACE
    WALLEN, LJ
    MICHIGAN MATHEMATICAL JOURNAL, 1969, 16 (02) : 149 - &
  • [49] Vitali Covering Theorem in Hilbert space
    Tiser, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) : 3277 - 3289
  • [50] A REPRESENTATION THEOREM FOR NORMS IN HILBERT SPACE
    Shih, Mau-Hsiang
    Takahashi, Wataru
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (08): : 2137 - 2139