On Existence of Primitive Normal Elements of Cubic Form over Finite Fields

被引:0
作者
Hazarika, Himangshu [1 ]
Basnet, Dhiren Kumar [1 ]
机构
[1] Tezpur Univ, Dept Math Sci, Tezpur, Assam, India
关键词
finite field; primitive element; free element; normal basis; character;
D O I
10.1142/S1005386722000128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prime p and a positive integer k, let q = p(k) and F-q(n) be the extension field of F-q. We derive a sufficient condition for the existence of a primitive element a in F-q(n) such that alpha(3) - alpha + 1 is also a primitive element of F-q(n), a sufficient condition for the existence of a primitive normal element alpha in F-q(n) over F-q such that alpha(3) - alpha+1 is a primitive element of F-q(n), and a sufficient condition for the existence of a primitive normal element a in F-q(n) over F-q such that alpha(3) - alpha + 1 is also a primitive normal element of F-q(n) over F-q.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 14 条
[1]  
Agnew G. B., 1991, Journal of Cryptology, V3, P63, DOI 10.1007/BF00196789
[2]   On primitive normal elements over finite fields [J].
Anju ;
Sharma, R. K. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (02)
[3]   The primitive normal basis theorem without a computer [J].
Cohen, SD ;
Huczynska, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :41-56
[4]   The strong primitive normal basis theorem [J].
Cohen, Stephen D. ;
Huczynska, Sophie .
ACTA ARITHMETICA, 2010, 143 (04) :299-332
[5]  
Cortellini E., 2003, COMPUT SCI J MOLDOVA, V11, P150
[6]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[7]   A CLASS OF INCOMPLETE CHARACTER SUMS [J].
Fu, Lei ;
Wan, Daqing .
QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04) :1195-1211
[8]  
[贺龙斌 He Longbin], 2003, [信息工程大学学报, Journal of Information Engineering University], V4, P97
[9]  
LENSTRA HW, 1987, MATH COMPUT, V48, P217, DOI 10.1090/S0025-5718-1987-0866111-3
[10]   On the Existence for Some Special Primitive Elements in Finite Fields [J].
Liao, Qunying ;
Li, Jiyou ;
Pu, Keli .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (02) :259-266