Comparison of alternative improved perturbative methods for nonlinear oscillations

被引:24
作者
Amore, P
Raya, A
Fernández, FM
机构
[1] Univ Colima, Fac Ciencias, Colima, Mexico
[2] Natl Univ La Plata, CONICET, INIFTA, RA-1900 La Plata, Argentina
关键词
D O I
10.1016/j.physleta.2005.04.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss and compare two alternative perturbation approaches for the calculation of the period of nonlinear systems based on the Lindstedt-Poincare technique. As illustrative examples we choose one-dimensional anharmonic oscillators and the Van der Pol equation. Our results show that each approach is better for just one type of model considered here. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 17 条
[1]   High order analysis of nonlinear periodic differential equations [J].
Amore, P ;
Lamas, HM .
PHYSICS LETTERS A, 2004, 327 (2-3) :158-166
[2]   Presenting a new method for the solution of nonlinear problems [J].
Amore, P ;
Aranda, A .
PHYSICS LETTERS A, 2003, 316 (3-4) :218-225
[3]  
AMORE P, UNPUB J SOUND VIB
[4]  
[Anonymous], 1970, CLASSICAL DYNAMICS P
[5]  
[Anonymous], 1990, LARGE ORDER PERTURBA
[6]   Applying the linear delta expansion to disordered systems [J].
Blencowe, MP ;
Korte, AP .
PHYSICAL REVIEW B, 1997, 56 (15) :9422-9430
[7]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[8]  
Fernandez F. M., 2000, INTRO PERTURBATION T
[9]   Quantum dynamics of the slow rollover transition in the linear delta expansion [J].
Jones, HF ;
Parkin, P ;
Winder, D .
PHYSICAL REVIEW D, 2001, 63 (12)
[10]   RENORMALIZED PERTURBATION-SERIES [J].
KILLINGBECK, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :1005-1008