Introduction to Global Analysis. Minimal Surfaces in Riemannian Manifolds

被引:1
作者
Colding, Tobias Holck [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
IMMERSIONS; EXISTENCE; TOPOLOGY;
D O I
10.1090/bull/1689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:353 / 356
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 1970, Proc. Sympos. Pure Math.
[2]  
[Anonymous], AM MATH SOC C PUBLIC
[3]  
COLDING T. H., 2011, GRADUATE STUDIES MAT, V121
[4]   Width and finite extinction time of Ricci flow [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
GEOMETRY & TOPOLOGY, 2008, 12 :2537-2586
[5]  
MEEKS W, 1982, ANN MATH, V116, P621
[6]   MINIMAL 2-SPHERES AND THE TOPOLOGY OF MANIFOLDS WITH POSITIVE CURVATURE ON TOTALLY ISOTROPIC 2-PLANES [J].
MICALLEF, MJ ;
MOORE, JD .
ANNALS OF MATHEMATICS, 1988, 127 (01) :199-227
[7]  
Milnor, 1963, ANN MATH STUD
[8]  
Moore JD, 2017, INTRO GLOBAL ANAL MI
[9]   Bumpy metrics and closed parametrized minimal surfaces in Riemannian manifolds [J].
Moore, John Douglas .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5193-5256
[10]  
Osserman R., 1986, SURVEY MINIMAL SURFA