Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators

被引:19
作者
Zarin, Rahat [1 ]
Khan, Amir [2 ,3 ]
Kumar, Pushpendra [4 ]
Humphries, Usa Wannasingha [3 ]
机构
[1] Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan
[2] Univ Swat, Dept Math & Stat, Swat, Khyber Pakhtunk, Pakistan
[3] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[4] Univ Johannesburg, Inst Future Knowledge, POB 524, ZA-2006 Auckland Pk, South Africa
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 10期
关键词
stability analysis; co; -infection; reproduction number; fractional modeling; TRYPANOSOMA-CRUZI; FOLLOW-UP; DISEASE; COINFECTION; AIDS;
D O I
10.3934/math.20221041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we reformulate and analyze a co-infection model consisting of Chagas and HIV epidemics. The basic reproduction number R-0 of the proposed model is established along with the feasible region and disease-free equilibrium point E-0. We prove that E(0 )is locally asymptotically stable when R-0 is less than one. Then, the model is fractionalized by using some important fractional derivatives in the Caputo sense. The analysis of the existence and uniqueness of the solution along with Ulam-Hyers stability is established. Finally, we solve the proposed epidemic model by using a novel numerical scheme, which is generated by Newton polynomials. The given model is numerically solved by considering some other fractional derivatives like Caputo, Caputo-Fabrizio and fractal-fractional with power law, exponential decay and Mittag-Leffler kernels.
引用
收藏
页码:18897 / 18924
页数:28
相关论文
共 34 条