A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering

被引:66
作者
Chen, Binling [1 ]
Berretta, Silvia [1 ]
Evans, Ken [1 ]
Smith, Kaylie [2 ]
Ghita, Oana [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[2] 2 DTech Ltd, Unit 2, Chosen View Rd, Cheltenham GL51 9LT, Glos, England
基金
英国工程与自然科学研究理事会;
关键词
Graphene; PEEK; Nanocomposites; Powders; Laser sintering; THERMAL-DECOMPOSITION; POLYMER; PERFORMANCE; GRAPHENE; CARBON; MECHANISM; GRAPHITE;
D O I
10.1016/j.apsusc.2017.09.226
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper proposes two methods of preparation of graphene/PEEK powders for Laser Sintering (LS) and investigates their behaviour in relation to their microstructure and their properties. Thin composite films were fabricated in an attempt to replicate the thin layer formation of the powder bed process. Both methods of composite powder preparation (wet and dry) led to enhanced mechanical performance of the composite films at 0.1 and 0.5 wt% graphene nano-platelets (GNP) concentrations. The TEM images show that the GNP act as a nucleation point in crystallisation of PEEK, being at the centre of the spherulites. The hot stage microscopy reveals a 20 s delay in the onset of GNP/PEEK nanocomposite coalescence in comparison with plain PEEK. This is a very important observation for laser sintering, as it will influence the build strategy and specific parameters (e.g. time between layers deposition, multiple exposures). The excellent electrical conductivity properties of graphene were noticeable in the nanocomposite films at concentrations above 1 wt% GNP. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1018 / 1028
页数:11
相关论文
共 36 条
  • [1] Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering
    Berretta, S.
    Wang, Y.
    Davies, R.
    Ghita, O. R.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2016, 51 (10) : 4778 - 4794
  • [2] Processability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS)
    Berretta, S.
    Evans, K. E.
    Ghita, O.
    [J]. EUROPEAN POLYMER JOURNAL, 2015, 68 : 243 - 266
  • [3] Ultrasonic dispersion of inorganic nanoparticles in epoxy resin
    Bittmann, Birgit
    Haupert, Frank
    Schlarb, Alois K.
    [J]. ULTRASONICS SONOCHEMISTRY, 2009, 16 (05) : 622 - 628
  • [4] Chen B., 2017, J MATER RES, P1
  • [5] X-RAY DATA FOR POLY(ARYL ETHER KETONES)
    DAWSON, PC
    BLUNDELL, DJ
    [J]. POLYMER, 1980, 21 (05) : 577 - 578
  • [6] High performance polymer nanocomposites for additive manufacturing applications
    de Leon, Al C.
    Chen, Qiyi
    Palaganas, Napolabel B.
    Palaganas, Jerome O.
    Manapat, Jill
    Advincula, Rigoberto C.
    [J]. REACTIVE & FUNCTIONAL POLYMERS, 2016, 103 : 141 - 155
  • [7] High-performance nanocomposites based on polyetherketones
    Diez-Pascual, Ana M.
    Naffakh, Mohammed
    Marco, Carlos
    Ellis, Gary
    Gomez-Fatou, Marian A.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2012, 57 (07) : 1106 - 1190
  • [8] Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    Ferrari, Andrea C.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 47 - 57
  • [9] Mechanical and thermal stability of graphene and graphene-based materials
    Galashev, A. E.
    Rakhmanova, O. R.
    [J]. PHYSICS-USPEKHI, 2014, 57 (10) : 970 - 989
  • [10] Processing of a Polyamide-12/carbon nanofibre composite by laser sintering
    Goodridge, R. D.
    Shofner, M. L.
    Hague, R. J. M.
    McClelland, M.
    Schlea, M. R.
    Johnson, R. B.
    Tuck, C. J.
    [J]. POLYMER TESTING, 2011, 30 (01) : 94 - 100