Rapid High-Precision Diagnosis of the Capacity and Internal Resistance of Lithium-Ion Batteries Using Impedance Measurements

被引:2
|
作者
Hazama, Hirofumi [1 ]
Kondo, Hiroki [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
关键词
DEGRADATION; CALENDAR; MECHANISMS; DISCOVERY; CELLS; FADE;
D O I
10.1149/1945-7111/ac2703
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs), which are increasingly employed for energy storage, should be reused whenever possible to mitigate resource depletion and environmental problems. This requires a nondestructive diagnostic method to assess their potential for reuse in terms of capacity reduction and power drop, which occurs with increased internal resistance. The diagnostic method should be fast and simplified with no need to adjust the temperature or state of charge (SOC) when classifying numerous LIBs. To develop such a method, we compiled 4,220 impedance measurements taken at temperatures ranging from -20 degrees C to 50 degrees C and SOCs from 0% to 100%. 18650-type cylindrical LIBs were used to construct a prediction model of the capacity or internal resistance via machine learning using the impedance, temperature, and open-circuit voltage, instead of the SOC. Through a strict selection of frequencies at which the impedances of used LIBs were measured, it was possible to simultaneously predict LIB capacity and internal resistance with high precision at any temperature or SOC after less than 1 min of impedance measurement. To enhance the generalization performance, three types of degraded LIBs were employed in the prediction model. Finally, this study demonstrated improved data prediction in the extrapolation area.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
    Smith, A. J.
    Burns, J. C.
    Trussler, S.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) : A196 - A202
  • [2] High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges
    Willenberg, Lisa K.
    Dechent, Philipp
    Fuchs, Georg
    Sauer, Dirk Uwe
    Figgemeier, Egbert
    SUSTAINABILITY, 2020, 12 (02)
  • [3] Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries
    Xiao, Feiyu
    Xing, Bobin
    Kong, Lingzhao
    Xia, Yong
    ENERGY, 2021, 230
  • [4] Internal Impedance in Determining Usability of Used Lithium-Ion Batteries in Second-Life Applications
    Tran, Minh
    Sihvo, Jussi
    Roinila, Tomi
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (05) : 6513 - 6521
  • [5] Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention
    Srinivasan, Rengaswamy
    Demirev, Plamen A.
    Carkhuff, Bliss G.
    JOURNAL OF POWER SOURCES, 2018, 405 : 30 - 36
  • [6] Degradation diagnosis of lithium-ion batteries considering internal gas evolution
    Ju, Lingling
    Li, Xining
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [7] Degradation Behavior of Lithium-Ion Batteries During Calendar Ageing-The Case of the Internal Resistance Increase
    Stroe, Daniel-Ioan
    Swierczynski, Maciej
    Kaer, Soren Knudsen
    Teodorescu, Remus
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (01) : 517 - 525
  • [8] In-Operando Impedance Spectroscopy and Ultrasonic Measurements during High-Temperature Abuse Experiments on Lithium-Ion Batteries
    Zappen, Hendrik
    Fuchs, Georg
    Gitis, Alexander
    Sauer, Dirk Uwe
    BATTERIES-BASEL, 2020, 6 (02):
  • [9] Online lithium plating detection based on charging internal resistance for lithium-ion batteries
    Zhang, Xue
    Mao, Shuoyuan
    Han, Xuebing
    Cai, Hongchang
    Zhu, Zhicheng
    Li, Suran
    Sun, Yuedong
    Wang, Jia
    Li, Xiangjun
    Dai, Feng
    Hua, Jianfeng
    Zheng, Yuejiu
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [10] State of health and charge measurements in lithium-ion batteries using mechanical stress
    Cannarella, John
    Arnold, Craig B.
    JOURNAL OF POWER SOURCES, 2014, 269 : 7 - 14