Optical trapping meets atomic force microscopy: A precision force microscope for biophysics

被引:0
作者
King, Gavin M. [1 ]
Churnside, Allison B. [1 ]
Perkins, Thomas T. [1 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
来源
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION VII | 2010年 / 7762卷
基金
美国国家科学基金会;
关键词
Optical traps; Atomic force microscopy; Scanning probe microscopy; Ultra-stable; Precision; Single molecule; TRACKING; REGISTRATION; STABILITY; MOTION;
D O I
10.1117/12.862745
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mechanical drift between an atomic force microscope (AFM) tip and sample is a longstanding problem that limits tip-sample stability, registration, and the signal-to-noise ratio during imaging. We demonstrate a robust solution to drift that enables novel precision measurements, especially of biological macromolecules in physiologically relevant conditions. Our strategy - inspired by precision optical trapping microscopy - is to actively stabilize both the tip and the sample using locally generated optical signals. In particular, we scatter a laser off the apex of commercial AFM tips and use the scattered light to locally measure and thereby actively control the tip's three-dimensional position above a sample surface with atomic precision in ambient conditions. With this enhanced stability, we overcome the traditional need to scan rapidly while imaging and achieve a 5-fold increase in the image signal-to-noise ratio. Finally, we demonstrate atomic-scale (similar to 100 pm) tip-sample stability and registration over tens of minutes with a series of AFM images. The stabilization technique requires low laser power (<1 mW), imparts a minimal perturbation upon the cantilever, and is independent of the tip-sample interaction. This work extends atomic-scale tip-sample control, previously restricted to cryogenic temperatures and ultrahigh vacuum, to a wide range of perturbative operating environments.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Feasibility of modulated optical deflection sensing in atomic force microscopy
    Ng, TW
    Lee, WS
    Sasaki, O
    Third International Conference on Experimental Mechanics and Third Conference of the Asian-Committee-on-Experimental-Mechanics, Pts 1and 2, 2005, 5852 : 621 - 626
  • [42] Force Sensing on Cells and Tissues by Atomic Force Microscopy
    Holuigue, Hatice
    Lorenc, Ewelina
    Chighizola, Matteo
    Schulte, Carsten
    Varinelli, Luca
    Deraco, Marcello
    Guaglio, Marcello
    Gariboldi, Manuela
    Podesta, Alessandro
    SENSORS, 2022, 22 (06)
  • [43] Atomic force microscopy of gibbsite
    Lloyd, S
    Thurgate, SM
    Cornell, RM
    Parkinson, GM
    APPLIED SURFACE SCIENCE, 1998, 135 (1-4) : 178 - 182
  • [44] Examination of atomic (scanning) force microscopy probe tips with the transmission electron microscope
    DeRose, JA
    Revel, JP
    MICROSCOPY AND MICROANALYSIS, 1997, 3 (03) : 203 - 213
  • [45] CMOS monolithic atomic force microscope
    Barrettino, D
    Hafizovic, S
    Volden, T
    Sedivy, J
    Kirstein, K
    Hierlermann, A
    Baltes, H
    2004 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2004, : 306 - 309
  • [46] Self Heating of an Atomic Force Microscope
    Kucera, O.
    ACTA POLYTECHNICA, 2010, 50 (01) : 9 - 11
  • [47] An atomic force microscope for small cantilevers
    Schaffer, TE
    Viani, M
    Walters, DA
    Drake, B
    Runge, EK
    Cleveland, JP
    Wendman, MA
    Hansma, PK
    MICROMACHINING AND IMAGING, 1997, 3009 : 48 - 52
  • [48] Electrical Analogy to an Atomic Force Microscope
    Kucera, Ondrej
    RADIOENGINEERING, 2010, 19 (01) : 168 - 171
  • [49] Coaxial atomic force microscope tweezers
    Brown, K. A.
    Aguilar, J. A.
    Westervelt, R. M.
    APPLIED PHYSICS LETTERS, 2010, 96 (12)
  • [50] Surface plasmon resonances of optical antenna atomic force microscope tips
    Zou, Yanshu
    Steinvurzel, Paul
    Yang, Tian
    Crozier, Kenneth B.
    APPLIED PHYSICS LETTERS, 2009, 94 (17)